IDEAS home Printed from https://ideas.repec.org/p/net/wpaper/0728.html
   My bibliography  Save this paper

Congestion and Market Structure in the Airline Industry

Author

Abstract

Empirical research on the relationship between market congestion and the market competitive level largely falsifies the positive relationship predicted by theoretical models. In this paper, I exploit the airline industry network structure and focus on the level of congestion during periods in which passengers cross-connect to their final destinations. About 70% of hub airport flights depart or land during these periods. The empirical analysis establishes a strong positive relationship. Furthermore, based on a simple theoretical model, I am able to quantify the potential time savings from eliminating congestion externalities and find that, on average, a flight can save 2 minutes of flight time at its departing airport and another 1.5 minutes at its destination airport. I also find that airlines choose to pad their schedule particularly on competitive routes, presumably to attract uninformed passengers. JEL classification: L93; R41;

Suggested Citation

  • Itai Ater, 2007. "Congestion and Market Structure in the Airline Industry," Working Papers 07-28, NET Institute, revised Sep 2007.
  • Handle: RePEc:net:wpaper:0728
    as

    Download full text from publisher

    File URL: http://www.netinst.org/Ater_07-28.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pels, Eric & Verhoef, Erik T., 2004. "The economics of airport congestion pricing," Journal of Urban Economics, Elsevier, vol. 55(2), pages 257-277, March.
    2. Brueckner, Jan K., 2005. "Internalization of airport congestion: A network analysis," International Journal of Industrial Organization, Elsevier, vol. 23(7-8), pages 599-614, September.
    3. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    4. Michael Mazzeo, 2003. "Competition and Service Quality in the U.S. Airline Industry," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 22(4), pages 275-296, June.
    5. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    6. Basso, Leonardo J. & Zhang, Anming, 2007. "Congestible facility rivalry in vertical structures," Journal of Urban Economics, Elsevier, vol. 61(2), pages 218-237, March.
    7. Jan K. Brueckner, 2002. "Airport Congestion When Carriers Have Market Power," American Economic Review, American Economic Association, vol. 92(5), pages 1357-1375, December.
    8. Daniel, Joseph I. & Harback, Katherine Thomas, 2008. "(When) Do hub airlines internalize their self-imposed congestion delays?," Journal of Urban Economics, Elsevier, vol. 63(2), pages 583-612, March.
    9. Zhang, Anming & Zhang, Yimin, 2006. "Airport capacity and congestion when carriers have market power," Journal of Urban Economics, Elsevier, vol. 60(2), pages 229-247, September.
    10. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    11. Steven A. Morrison & Clifford Winston, 2007. "Another Look at Airport Congestion Pricing," American Economic Review, American Economic Association, vol. 97(5), pages 1970-1977, December.
    12. Daniel, Joseph I. & Pahwa, Munish, 2000. "Comparison of Three Empirical Models of Airport Congestion Pricing," Journal of Urban Economics, Elsevier, vol. 47(1), pages 1-38, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hugo E. Silva & Robin Lindsey & André de Palma & Vincent A. C. van den Berg, 2017. "On the Existence and Uniqueness of Equilibrium in the Bottleneck Model with Atomic Users," Transportation Science, INFORMS, vol. 51(3), pages 863-881, August.
    2. Silva, Hugo E. & Verhoef, Erik T. & van den Berg, Vincent A.C., 2014. "Airlines’ strategic interactions and airport pricing in a dynamic bottleneck model of congestion," Journal of Urban Economics, Elsevier, vol. 80(C), pages 13-27.
    3. Brueckner, Jan K. & Verhoef, Erik T., 2010. "Manipulable congestion tolls," Journal of Urban Economics, Elsevier, vol. 67(3), pages 315-321, May.
    4. Brueckner, Jan K. & Van Dender, Kurt, 2008. "Atomistic congestion tolls at concentrated airports? Seeking a unified view in the internalization debate," Journal of Urban Economics, Elsevier, vol. 64(2), pages 288-295, September.
    5. Zhang, Anming & Czerny, Achim I., 2012. "Airports and airlines economics and policy: An interpretive review of recent research," Economics of Transportation, Elsevier, vol. 1(1), pages 15-34.
    6. Zhang, Anming & Zhang, Yimin, 2010. "Airport capacity and congestion pricing with both aeronautical and commercial operations," Transportation Research Part B: Methodological, Elsevier, vol. 44(3), pages 404-413, March.
    7. Silva, Hugo E. & Verhoef, Erik T., 2013. "Optimal pricing of flights and passengers at congested airports and the efficiency of atomistic charges," Journal of Public Economics, Elsevier, vol. 106(C), pages 1-13.
    8. Czerny, Achim I. & Zhang, Anming, 2014. "Airport peak-load pricing revisited: The case of peak and uniform tolls," Economics of Transportation, Elsevier, vol. 3(1), pages 90-101.
    9. Guo, Huanxiu & Jiang, Changmin & Wan, Yulai, 2018. "Can airfares tell? An alternative empirical strategy for airport congestion internalization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 648-661.
    10. Federico Boffa & Alessandro Fedele & Alberto Iozzi, 2020. "Congestion and Incentives in the Age of Driverless Fleets," BEMPS - Bozen Economics & Management Paper Series BEMPS67, Faculty of Economics and Management at the Free University of Bozen.
    11. Ater, Itai, 2012. "Internalization of congestion at US hub airports," Journal of Urban Economics, Elsevier, vol. 72(2), pages 196-209.
    12. Rupp, Nicholas G., 2009. "Do carriers internalize congestion costs? Empirical evidence on the internalization question," Journal of Urban Economics, Elsevier, vol. 65(1), pages 24-37, January.
    13. Brueckner, Jan K., 2009. "Price vs. quantity-based approaches to airport congestion management," Journal of Public Economics, Elsevier, vol. 93(5-6), pages 681-690, June.
    14. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    15. Jiang, Changmin & Zhang, Anming, 2015. "Airport congestion pricing and terminal investment: Effects of terminal congestion, passenger types, and concessionsAuthor-Name: Wan, Yulai," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 91-113.
    16. Verhoef, Erik T. & Silva, Hugo E., 2017. "Dynamic equilibrium at a congestible facility under market power," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 174-192.
    17. Daniel, Joseph I. & Harback, Katherine Thomas, 2009. "Pricing the major US hub airports," Journal of Urban Economics, Elsevier, vol. 66(1), pages 33-56, July.
    18. Gillen, David & Jacquillat, Alexandre & Odoni, Amedeo R., 2016. "Airport demand management: The operations research and economics perspectives and potential synergies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 495-513.
    19. Jan K. Brueckner, 2008. "Slot-Based Approaches to Airport Congestion Management," CESifo Working Paper Series 2302, CESifo.
    20. Achim I. Czerny & Anming Zhang, 2010. "Airport Congestion Pricing and Passenger Types," WHU Working Paper Series - Economics Group 10-01, WHU - Otto Beisheim School of Management.

    More about this item

    Keywords

    Congestion; Air Transportation;

    JEL classification:

    • L93 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Air Transportation
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:net:wpaper:0728. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.NETinst.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nicholas Economides (email available below). General contact details of provider: http://www.NETinst.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.