IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/6736.html
   My bibliography  Save this paper

Discrete-Time Models of Bond Pricing

Author

Listed:
  • David Backus
  • Silverio Foresi
  • Chris Telmer

Abstract

We explore a variety of models and approaches to bond pricing, including those associated with Vasicek, Cox-Ingersoll-Ross, Ho and Lee, and Heath-Jarrow-Morton, as well as models with jumps, multiple factors, and stochastic volatility. We describe each model in a common theoretical framework and explain the reasoning underlying the choice of parameter values. Our framework has continuous state variables but discrete time, which we regard as a convenient middle ground between the stochastic calculus of high theory and the binomial models of classroom fame. In this setting, most of the models we examine are easily implemented on a spreadsheet.

Suggested Citation

  • David Backus & Silverio Foresi & Chris Telmer, 1998. "Discrete-Time Models of Bond Pricing," NBER Working Papers 6736, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:6736
    Note: AP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w6736.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gibbons, Michael R & Ramaswamy, Krishna, 1993. "A Test of the Cox, Ingersoll, and Ross Model of the Term Structure," Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 619-658.
    2. David Backus & Silverio Foresi & Chris Telmer, 1996. "Affine Models of Currency Pricing," NBER Working Papers 5623, National Bureau of Economic Research, Inc.
    3. Backus, David & Foresi, Silverio & Zin, Stanley, 1998. "Arbitrage Opportunities in Arbitrage-Free Models of Bond Pricing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 13-26, January.
    4. David Backus & Silverio Foresi & Liuren Wu, 2002. "Accouting for Biases in Black-Scholes," Finance 0207008, University Library of Munich, Germany.
    5. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    6. Pierluigi Balduzzi & Sanjiv Ranjan Das & Silverio Foresi, 1998. "The Central Tendency: A Second Factor In Bond Yields," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 62-72, February.
    7. Duffie, Darrell & Singleton, Kenneth J, 1997. "An Econometric Model of the Term Structure of Interest-Rate Swap Yields," Journal of Finance, American Finance Association, vol. 52(4), pages 1287-1321, September.
    8. Turnbull, Stuart M & Milne, Frank, 1991. "A Simple Approach to Interest-Rate Option Pricing," Review of Financial Studies, Society for Financial Studies, vol. 4(1), pages 87-120.
    9. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    10. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    11. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    12. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    13. Backus, David & Foresi, Silverio & Mozumdar, Abon & Wu, Liuren, 2001. "Predictable changes in yields and forward rates," Journal of Financial Economics, Elsevier, vol. 59(3), pages 281-311, March.
    14. Pearson, Neil D & Sun, Tong-Sheng, 1994. "Exploiting the Conditional Density in Estimating the Term Structure: An Application to the Cox, Ingersoll, and Ross Model," Journal of Finance, American Finance Association, vol. 49(4), pages 1279-1304, September.
    15. Brennan, Michael J. & Schwartz, Eduardo S., 1979. "A continuous time approach to the pricing of bonds," Journal of Banking & Finance, Elsevier, vol. 3(2), pages 133-155, July.
    16. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    17. Hull, John & White, Alan, 1993. "One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(2), pages 235-254, June.
    18. Michael J. Brennan and Eduardo S. Schwartz., 1979. "A Continuous-Time Approach to the Pricing of Bonds," Research Program in Finance Working Papers 85, University of California at Berkeley.
    19. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    20. Longstaff, Francis A & Schwartz, Eduardo S, 1992. "Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model," Journal of Finance, American Finance Association, vol. 47(4), pages 1259-1282, September.
    21. Sun, Tong-sheng, 1992. "Real and Nominal Interest Rates: A Discrete-Time Model and Its Continuous-Time Limit," Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 581-611.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    2. David K. Backus & Stanley E. Zin, 1994. "Reverse Engineering the Yield Curve," Working Papers 94-09, New York University, Leonard N. Stern School of Business, Department of Economics.
    3. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    4. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    5. repec:wyi:journl:002109 is not listed on IDEAS
    6. Jin-Chuan Duan & Kris Jacobs, 2001. "Short and Long Memory in Equilibrium Interest Rate Dynamics," CIRANO Working Papers 2001s-22, CIRANO.
    7. Tunaru, Diana, 2017. "Gaussian estimation and forecasting of the U.K. yield curve with multi-factor continuous-time models," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 119-129.
    8. R.C. Stapleton & Marti G. Subrahmanyam, 1999. "The Term Structure of Interest Rate-Futures Prices," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-045, New York University, Leonard N. Stern School of Business-.
    9. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, Open Access Journal, vol. 3(4), pages 1-28, November.
    10. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    11. Zura Kakushadze, 2015. "Coping with Negative Short-Rates," Papers 1502.06074, arXiv.org, revised Aug 2015.
    12. Andrew Jeffrey & Linton, Oliver Linton & Thong Nguyen & Peter C.B. Phillips, 2001. "Nonparametric Estimation of a Multifactor Heath-Jarrow-Morton Model: An Integrated Approach," Cowles Foundation Discussion Papers 1311, Cowles Foundation for Research in Economics, Yale University.
    13. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    14. Fan, Longzhen & Johansson, Anders C., 2010. "China's official rates and bond yields," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 996-1007, May.
    15. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
    16. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    17. Backus, David & Foresi, Silverio & Mozumdar, Abon & Wu, Liuren, 2001. "Predictable changes in yields and forward rates," Journal of Financial Economics, Elsevier, vol. 59(3), pages 281-311, March.
    18. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    19. repec:wyi:journl:002108 is not listed on IDEAS
    20. Michael J. Fleming & Eli M. Remolona, 1999. "The term structure of announcement effects," Staff Reports 76, Federal Reserve Bank of New York.
    21. Markus Leippold & Liuren Wu, 1999. "The Potential Approach to Bond and Currency Pricing," Finance 9903004, University Library of Munich, Germany.
    22. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Modelos de la estructura de plazos de las tasas de interés: Revisión, tendencias y perspectivas," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.

    More about this item

    JEL classification:

    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:6736. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.