IDEAS home Printed from https://ideas.repec.org/p/cmu/gsiawp/251.html
   My bibliography  Save this paper

Discrete time models of bond pricing

Author

Listed:

Abstract

We explore a variety of models and approaches to bond pricing, including those associated with Vasicek, Cox-Ingersoll-Ross, Ho and Lee, and Heath-Jarrow-Morton, as well as models with jumps, multiple factors, and stochastic volatility. We describe each model in a common theoretical framework and explain the reasoning underlying the choice of parameter values. Our framework has continuous state variables but discrete time, which we regard as a convenient middle ground between the stochastic calculus of high theory and the binomial models of classroom fame. In this setting, most of the models we examine are easily implemented on a spreadsheet.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • David K. Backus & Silverio Foresi & Chris Telmer, "undated". "Discrete time models of bond pricing," GSIA Working Papers 251, Carnegie Mellon University, Tepper School of Business.
  • Handle: RePEc:cmu:gsiawp:251
    as

    Download full text from publisher

    File URL: http://bertha.tepper.cmu.edu/files/papers/tuck.ps
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    2. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    3. Backus, David & Foresi, Silverio & Mozumdar, Abon & Wu, Liuren, 2001. "Predictable changes in yields and forward rates," Journal of Financial Economics, Elsevier, vol. 59(3), pages 281-311, March.
    4. Pearson, Neil D & Sun, Tong-Sheng, 1994. " Exploiting the Conditional Density in Estimating the Term Structure: An Application to the Cox, Ingersoll, and Ross Model," Journal of Finance, American Finance Association, vol. 49(4), pages 1279-1304, September.
    5. Pierluigi Balduzzi & Sanjiv Ranjan Das & Silverio Foresi, 1998. "The Central Tendency: A Second Factor In Bond Yields," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 62-72, February.
    6. David Backus & Silverio Foresi & Chris Telmer, 1996. "Affine Models of Currency Pricing," NBER Working Papers 5623, National Bureau of Economic Research, Inc.
    7. Brennan, Michael J. & Schwartz, Eduardo S., 1979. "A continuous time approach to the pricing of bonds," Journal of Banking & Finance, Elsevier, vol. 3(2), pages 133-155, July.
    8. Backus, David & Foresi, Silverio & Zin, Stanley, 1998. "Arbitrage Opportunities in Arbitrage-Free Models of Bond Pricing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 13-26, January.
    9. David Backus & Silverio Foresi & Liuren Wu, 2002. "Accouting for Biases in Black-Scholes," Finance 0207008, EconWPA.
    10. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    11. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    12. Hull, John & White, Alan, 1993. "One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(02), pages 235-254, June.
    13. Duffie, Darrell & Singleton, Kenneth J, 1997. " An Econometric Model of the Term Structure of Interest-Rate Swap Yields," Journal of Finance, American Finance Association, vol. 52(4), pages 1287-1321, September.
    14. Turnbull, Stuart M & Milne, Frank, 1991. "A Simple Approach to Interest-Rate Option Pricing," Review of Financial Studies, Society for Financial Studies, vol. 4(1), pages 87-120.
    15. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    16. Ohlson, James A & Garman, Mark B, 1980. " A Dynamic Equilibrium for the Ross Arbitrage Model," Journal of Finance, American Finance Association, vol. 35(3), pages 675-684, June.
    17. Gibbons, Michael R & Ramaswamy, Krishna, 1993. "A Test of the Cox, Ingersoll, and Ross Model of the Term Structure," Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 619-658.
    18. Darrell Duffie & Rui Kan, 1996. "A Yield-Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406.
    19. Longstaff, Francis A & Schwartz, Eduardo S, 1992. " Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model," Journal of Finance, American Finance Association, vol. 47(4), pages 1259-1282, September.
    20. Sun, Tong-sheng, 1992. "Real and Nominal Interest Rates: A Discrete-Time Model and Its Continuous-Time Limit," Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 581-611.
    21. Ho, Thomas S Y & Lee, Sang-bin, 1986. " Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cmu:gsiawp:251. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Steve Spear). General contact details of provider: http://www.tepper.cmu.edu/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.