IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/5387.html
   My bibliography  Save this paper

Sampling Errors and Confidence Intervals for Order Statistics: Implementing the Family Support Act

Author

Listed:
  • William C. Horrace
  • Peter Schmidt
  • Ann Dryden Witte

Abstract

The Family Support Act allows states to reimburse child care costs up to the 75th percentile of local market price for child care. States must carry out surveys to estimate these 75th percentiles. This estimation problem raises two major statistical issues: (1) picking a sample design that will allow one to estimate the percentiles cheaply, efficiently and equitably; and (2) assessing the sampling variability of the estimates obtained. For Massa- chusetts, we developed a sampling design that equalized the standard errors of the estimated percentiles across 65 distinct local markets. This design was chosen because state administrators felt public day care providers and child advocates would find it equitable, thus limiting costly appeals. Estimation of standard errors for the sample 75th percentiles requires estimation of the density of the population at the 75th percentile. We implement and compare a number of parametric and nonparametric methods of density estimation. A kernel estimator provides the most reasonable estimates. On the basis of the mean integrated squared error criterion we selected the Epanechnikov kernel and the Sheather-Jones automatic bandwidth selection procedure. Because some of our sample sizes were too small to rely on asymptotics, we also constructed nonparametric confidence intervals using the hypergeometric distrition. For most of our samples, these confidence intervals were similar to those based on the asymptotic standard errors. Substantively we find wide variation in the price of child care, depending on the child's age, type of care and geographic location. For full-time care, the 75th percentiles ranged from $242 per week for infants in child care centers in Boston to $85 per week for family day care in western Massachusetts.

Suggested Citation

  • William C. Horrace & Peter Schmidt & Ann Dryden Witte, 1995. "Sampling Errors and Confidence Intervals for Order Statistics: Implementing the Family Support Act," NBER Working Papers 5387, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:5387
    Note: LS PE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w5387.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    2. Cho, Guedae & Kim, MinKyoung & Koo, Won W., 2003. "Relative Agricultural Price Changes In Different Time Horizons," 2003 Annual meeting, July 27-30, Montreal, Canada 22249, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Berkowitz, J. & Birgean, I. & Kilian, L., 1999. "On the Finite-Sample Accuracy of Nonparametric Resampling Algorithms for Economic Time Series," Papers 99-01, Michigan - Center for Research on Economic & Social Theory.
    4. Marcelo Fernandes & Breno Neri, 2010. "Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 276-306.
    5. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    6. Antonia López Villavicencio & Josep Lluís Raymond Bara, 2006. "The short and long-run determinants of the real exchange rate in Mexico," Working Papers wpdea0606, Department of Applied Economics at Universitat Autonoma of Barcelona.
    7. Gruener Hans Peter & Hayo Bernd & Hefeker Carsten, 2009. "Unions, Wage Setting and Monetary Policy Uncertainty," The B.E. Journal of Macroeconomics, De Gruyter, vol. 9(1), pages 1-25, October.
    8. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    9. Arturo Estrella & Anthony P. Rodrigues, 1998. "Consistent covariance matrix estimation in probit models with autocorrelated errors," Staff Reports 39, Federal Reserve Bank of New York.
    10. PAUL CASHIN & C. JOHN McDERMOTT, 1998. "Are Australia's Current Account Deficits Excessive?," The Economic Record, The Economic Society of Australia, vol. 74(227), pages 346-361, December.
    11. Liudas Giraitis & Fulvia Marotta, 2023. "Estimation on unevenly spaced time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(5-6), pages 556-577, September.
    12. Wagner, Martin & Wied, Dominik, 2014. "Monitoring Stationarity and Cointegration," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100386, Verein für Socialpolitik / German Economic Association.
    13. Paul Cashin & C. McDermott, 2002. "Terms of Trade Shocks and the Current Account: Evidence from Five Industrial Countries," Open Economies Review, Springer, vol. 13(3), pages 219-235, July.
    14. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    15. Julia Reynolds & Leopold Sögner & Martin Wagner, 2021. "Deviations from Triangular Arbitrage Parity in Foreign Exchange and Bitcoin Markets," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 13(2), pages 105-146, June.
    16. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    17. Stephen G Cecchetti & Alfonso Flores-Lagunes & Stefan Krause, 2005. "Assessing the Sources of Changes in the Volatility of Real Growth," RBA Annual Conference Volume (Discontinued), in: Christopher Kent & David Norman (ed.),The Changing Nature of the Business Cycle, Reserve Bank of Australia.
    18. Zeynel Abidin Ozdemir, 2010. "Dynamics Of Inflation, Output Growth And Their Uncertainty In The Uk: An Empirical Analysis," Manchester School, University of Manchester, vol. 78(6), pages 511-537, December.
    19. Vasco Gabriel, 2003. "Tests for the Null Hypothesis of Cointegration: A Monte Carlo Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 411-435.
    20. Hoga, Yannick, 2017. "Monitoring multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 105-121.

    More about this item

    JEL classification:

    • C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods
    • H52 - Public Economics - - National Government Expenditures and Related Policies - - - Government Expenditures and Education

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:5387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.