IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/26340.html
   My bibliography  Save this paper

Benchmarking Global Optimizers

Author

Listed:
  • Antoine Arnoud
  • Fatih Guvenen
  • Tatjana Kleineberg

Abstract

We benchmark seven global optimization algorithms by comparing their performance on challenging multidimensional test functions as well as a method of simulated moments estimation of a panel data model of earnings dynamics. Five of the algorithms are taken from the popular NLopt open-source library: (i) Controlled Random Search with local mutation (CRS), (ii) Improved Stochastic Ranking Evolution Strategy (ISRES), (iii) Multi-Level Single-Linkage (MLSL) algorithm, (iv) Stochastic Global Optimization (StoGo), and (v) Evolutionary Strategy with Cauchy distribution (ESCH). The other two algorithms are versions of TikTak, which is a multistart global optimization algorithm used in some recent economic applications. For completeness, we add three popular local algorithms to the comparison—the Nelder-Mead downhill simplex algorithm, the Derivative-Free Non-linear Least Squares (DFNLS) algorithm, and a popular variant of the Davidon-Fletcher-Powell (DFPMIN) algorithm. To give a detailed comparison of algorithms, we use a set of benchmarking tools recently developed in the applied mathematics literature. We find that the success rate of many optimizers vary dramatically with the characteristics of each problem and the computational budget that is available. Overall, TikTak is the strongest performer on both the math test functions and the economic application. The next-best performing optimizers are StoGo and CRS for the test functions and MLSL for the economic application.

Suggested Citation

  • Antoine Arnoud & Fatih Guvenen & Tatjana Kleineberg, 2019. "Benchmarking Global Optimizers," NBER Working Papers 26340, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:26340
    Note: AP EFG LS ME TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w26340.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D52 - Microeconomics - - General Equilibrium and Disequilibrium - - - Incomplete Markets
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:26340. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.