IDEAS home Printed from https://ideas.repec.org/p/nav/ecupna/1206.html
   My bibliography  Save this paper

A simple test for the equality of integration orders

Author

Listed:

Abstract

A necessary condition for two time series to be nontrivially cointegrated is the equality of their respective integration orders. Thus, it is standard practice to test for order homogeneity prior to testing for cointegration. Tests for the equality of integration orders are particular cases of more general tests of linear restrictions among memory parameters of different time series, for which asymptotic theory has been developed in parametric and semiparametric settings. However, most tests have been developed in stationary and invertible settings, and, more importantly, many of them are invalid when the observables are cointegrated, because they usually involve inversion of an asymptotically singular matrix. We propose a general testing procedure which does not suffer from this serious drawback, and, in addition, it is very simple to compute, it covers the stationary/nonstationary and invertible/noninvertible ranges, and, as we show in a Monte Carlo experiment, it works well in finite samples.

Suggested Citation

  • Javier Hualde, 2012. "A simple test for the equality of integration orders," Documentos de Trabajo - Lan Gaiak Departamento de Economía - Universidad Pública de Navarra 1206, Departamento de Economía - Universidad Pública de Navarra.
  • Handle: RePEc:nav:ecupna:1206
    as

    Download full text from publisher

    File URL: ftp://ftp.econ.unavarra.es/pub/DocumentosTrab/DT1206.PDF
    Download Restriction: no

    References listed on IDEAS

    as
    1. P. M. Robinson & J. Hualde, 2003. "Cointegration in Fractional Systems with Unknown Integration Orders," Econometrica, Econometric Society, vol. 71(6), pages 1727-1766, November.
    2. Robinson, Peter M. & Yajima, Yoshihiro, 2002. "Determination of cointegrating rank in fractional systems," Journal of Econometrics, Elsevier, vol. 106(2), pages 217-241, February.
    3. Lobato, Ignacio N., 1999. "A semiparametric two-step estimator in a multivariate long memory model," Journal of Econometrics, Elsevier, vol. 90(1), pages 129-153, May.
    4. Marinucci, D & Robinson, Peter M., 2001. "Semiparametric fractional cointegration analysis," LSE Research Online Documents on Economics 2269, London School of Economics and Political Science, LSE Library.
    5. Robinson, P.M., 2005. "The distance between rival nonstationary fractional processes," Journal of Econometrics, Elsevier, vol. 128(2), pages 283-300, October.
    6. Marinucci, D. & Robinson, P. M., 2001. "Semiparametric fractional cointegration analysis," Journal of Econometrics, Elsevier, vol. 105(1), pages 225-247, November.
    7. D Marinucci & Peter M Robinson, 2001. "Semiparametric Fractional Cointegration Analysis," STICERD - Econometrics Paper Series 420, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    8. Marinucci, D. & Robinson, P. M., 2000. "Weak convergence of multivariate fractional processes," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 103-120, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    integration orders; fractional differencing; fractional cointegration.;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nav:ecupna:1206. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Javier Puértolas). General contact details of provider: http://www.econ.unavarra.es .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.