IDEAS home Printed from https://ideas.repec.org/p/mse/wpsorb/b06086.html
   My bibliography  Save this paper

Some Fubini theorems on sigma-algebras for non additive measures

Author

Abstract

We give some Fubini's theorems (interversion of the order of integration and product capacities) in the framework of the Choquet integral for product sigma-algebras. Following Ghirardato this is performed by considering slice-comonotonic functions. Our results can be easily interpreted for belief functions, in the Dempster and Shafer setting.

Suggested Citation

  • Alain Chateauneuf & Jean-Philippe Lefort, 2006. "Some Fubini theorems on sigma-algebras for non additive measures," Cahiers de la Maison des Sciences Economiques b06086, Université Panthéon-Sorbonne (Paris 1).
  • Handle: RePEc:mse:wpsorb:b06086
    as

    Download full text from publisher

    File URL: ftp://mse.univ-paris1.fr/pub/mse/cahiers2006/B06086.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Alain Chateauneuf & Fabio Maccheroni & Massimo Marinacci & Jean-Marc Tallon, 2005. "Monotone continuous multiple priors," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(4), pages 973-982, November.
    2. Hendon, Ebbe & Jacobsen, Hans Jorgen & Sloth, Birgitte & Tranaes, Torben, 1996. "The product of capacities and belief functions," Mathematical Social Sciences, Elsevier, vol. 32(2), pages 95-108, October.
    3. Ghirardato, Paolo, 1997. "On Independence for Non-Additive Measures, with a Fubini Theorem," Journal of Economic Theory, Elsevier, vol. 73(2), pages 261-291, April.
    4. Itzhak Gilboa & David Schmeidler, 1995. "Canonical Representation of Set Functions," Mathematics of Operations Research, INFORMS, vol. 20(1), pages 197-212, February.
    5. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    6. Massimo Marinacci, 1997. "Finitely Additive and Epsilon Nash Equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 26(3), pages 315-333.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Choquet integral; product capacity.;

    JEL classification:

    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:wpsorb:b06086. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lucie Label). General contact details of provider: http://edirc.repec.org/data/msep1fr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.