IDEAS home Printed from https://ideas.repec.org/p/mse/cesdoc/14006.html
   My bibliography  Save this paper

Stress Testing Engineering: the real risk measurement?

Author

Listed:

Abstract

Stress testing is used to determine the stability or the resilience of a given financial institution by deliberately submitting. In this paper, we focus on what may lead a bank to fail and how its resilience can be measured. Two families of triggers are analysed: the first stands in the stands in the impact of external (and / or extreme) events, the second one stands on the impacts of the choice of inadequate models for predictions or risks measurement; more precisely on models becoming inadequate with time because of not being sufficiently flexible to adapt themselves to dynamical changes

Suggested Citation

  • Dominique Guegan & Bertrand K Hassani, 2014. "Stress Testing Engineering: the real risk measurement?," Documents de travail du Centre d'Economie de la Sorbonne 14006, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  • Handle: RePEc:mse:cesdoc:14006
    as

    Download full text from publisher

    File URL: ftp://mse.univ-paris1.fr/pub/mse/CES2014/14006.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dominique Guegan & Pierre-André Maugis, 2008. "New prospects on vines," Documents de travail du Centre d'Economie de la Sorbonne b08095, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Mar 2010.
    2. Jeremy Berkowitz, 1999. "A coherent framework for stress-testing," Finance and Economics Discussion Series 1999-29, Board of Governors of the Federal Reserve System (U.S.).
    3. Kjersti Aas & Daniel Berg, 2009. "Models for construction of multivariate dependence - a comparison study," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 639-659.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Dominique Guegan & Pierre-André Maugis, 2010. "An Econometric Study of Vine Copulas," Documents de travail du Centre d'Economie de la Sorbonne 10040, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    6. Pesola, Jarmo, 2007. "Financial fragility, macroeconomic shocks and banks' loan losses : evidence from Europe," Research Discussion Papers 15/2007, Bank of Finland.
    7. Dominique Guegan & Bertrand K. Hassani & Xin Zhao, 2013. "Emerging Countries Sovereign Rating Adjustment using Market Information: Impact on Financial Institution Investment Decisions," Documents de travail du Centre d'Economie de la Sorbonne 13034, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    8. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    9. Koehler, K. J. & Symanowski, J. T., 1995. "Constructing Multivariate Distributions with Specific Marginal Distributions," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 261-282, November.
    10. repec:hal:journl:halshs-00645799 is not listed on IDEAS
    11. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    12. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bertrand K. Hassani, 2014. "Risk Appetite in Practice: Vulgaris Mathematica," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01020293, HAL.
    2. Bertrand K Hassani, 2014. "Risk Appetite in Practice: Vulgaris Mathematica," Documents de travail du Centre d'Economie de la Sorbonne 14037, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.

    More about this item

    Keywords

    Stress test; Risk; VaR;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:14006. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lucie Label). General contact details of provider: http://edirc.repec.org/data/cenp1fr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.