IDEAS home Printed from https://ideas.repec.org/p/mse/cesdoc/12008.html
   My bibliography  Save this paper

Comparaison of several estimation procedures for long term behavior

Author

Listed:

Abstract

In this paper, nine memory parameter estimation procedures for the fractionally integrated I(d) process, semi-parametric and parametric, which prevail in the existing literature are reviewed; through the simulation study under the ARFIMA (p,d,q) setting we cast a light on the finite sample performance of these estimation procedures for the non-stationary long memory time series. As a by-product of this study, we provide a bandwidth parameter selection strategy for the frequency domain estimation and an upper-and-lower scale trimming strategy for the wavelet domain estimation from a practical stand-point. The other objective of this paper is to give a useful reference to the applied reserachers and practitioners

Suggested Citation

  • Dominique Guegan & Zhiping Lu & BeiJia Zhu, 2012. "Comparaison of several estimation procedures for long term behavior," Documents de travail du Centre d'Economie de la Sorbonne 12008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  • Handle: RePEc:mse:cesdoc:12008
    as

    Download full text from publisher

    File URL: http://mse.univ-paris1.fr/pub/mse/CES2012/12008.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Shimotsu, Katsumi, 2002. "Exact Local Whittle Estimation of Fractional Integration with Unknown Mean and Time Trend," Economics Discussion Papers 8844, University of Essex, Department of Economics.
    2. Frederiksen, Per & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2012. "Local polynomial Whittle estimation of perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 167(2), pages 426-447.
    3. Peter C.B. Phillips, 1999. "Discrete Fourier Transforms of Fractional Processes," Cowles Foundation Discussion Papers 1243, Cowles Foundation for Research in Economics, Yale University.
    4. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    5. Tanaka, Katsuto, 1999. "The Nonstationary Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 15(4), pages 549-582, August.
    6. Katsumi Shimotsu & Peter C.B. Phillips, 2000. "Modified Local Whittle Estimation of the Memory Parameter in the Nonstationary Case," Cowles Foundation Discussion Papers 1265, Cowles Foundation for Research in Economics, Yale University.
    7. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2007. "Nonstationarity-extended local Whittle estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1353-1384, December.
    8. Shimotsu, Katsumi & Phillips, Peter C B, 2002. "Exact Local Whittle Estimation of Fractional Integration," Economics Discussion Papers 8838, University of Essex, Department of Economics.
    9. Faÿ, Gilles & Moulines, Eric & Roueff, François & Taqqu, Murad S., 2009. "Estimators of long-memory: Fourier versus wavelets," Journal of Econometrics, Elsevier, vol. 151(2), pages 159-177, August.
    10. Katsumi Shimotsu & Peter C.B. Phillips, 2000. "Local Whittle Estimation in Nonstationary and Unit Root Cases," Cowles Foundation Discussion Papers 1266, Cowles Foundation for Research in Economics, Yale University, revised Sep 2003.
    11. Frank S. Nielsen, 2008. "Local polynomial Whittle estimation covering non-stationary fractional processes," CREATES Research Papers 2008-28, Department of Economics and Business Economics, Aarhus University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heni Boubaker, 2016. "A Comparative Study of the Performance of Estimating Long-Memory Parameter Using Wavelet-Based Entropies," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 693-731, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Guegan & Zhiping Lu & Beijia Zhu, 2012. "Comparaison of Several Estimation Procedures for Long Term Behavior," Post-Print halshs-00673934, HAL.
    2. Frank S. Nielsen, 2008. "Local polynomial Whittle estimation covering non-stationary fractional processes," CREATES Research Papers 2008-28, Department of Economics and Business Economics, Aarhus University.
    3. Frank S. Nielsen, 2009. "Local Whittle estimation of multivariate fractionally integrated processes," CREATES Research Papers 2009-38, Department of Economics and Business Economics, Aarhus University.
    4. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    5. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    6. Shimotsu, Katsumi & Phillips, Peter C.B., 2006. "Local Whittle estimation of fractional integration and some of its variants," Journal of Econometrics, Elsevier, vol. 130(2), pages 209-233, February.
    7. Chang Sik Kim & Peter C.B. Phillips, 2006. "Log Periodogram Regression: The Nonstationary Case," Cowles Foundation Discussion Papers 1587, Cowles Foundation for Research in Economics, Yale University.
    8. Christian Fischer & Luis Alberiko Gil-Alana, 2005. "The Nature of the Relationship between International Tourism and International Trade: The Case of Ge," Faculty Working Papers 15/05, School of Economics and Business Administration, University of Navarra.
    9. Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
    10. Guglielmo Caporale & Luis Gil-Alana, 2013. "Long memory in US real output per capita," Empirical Economics, Springer, vol. 44(2), pages 591-611, April.
    11. Phillips, Peter C.B., 2005. "Challenges of trending time series econometrics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(5), pages 401-416.
    12. Shi, Wendong & Sun, Jingwei, 2016. "Aggregation and long-memory: An analysis based on the discrete Fourier transform," Economic Modelling, Elsevier, vol. 53(C), pages 470-476.
    13. Frank S. Nielsen, 2011. "Local Whittle estimation of multi‐variate fractionally integrated processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(3), pages 317-335, May.
    14. García-Enríquez, Javier & Hualde, Javier, 2019. "Local Whittle estimation of long memory: Standard versus bias-reducing techniques," Econometrics and Statistics, Elsevier, vol. 12(C), pages 66-77.
    15. Cheung, Ying Lun, 2020. "Nonstationarity-extended Whittle estimation with discontinuity: A correction," Economics Letters, Elsevier, vol. 187(C).
    16. Aaron Smallwood; Alex Maynard; Mark Wohar, 2005. "The Long and the Short of It: Long Memory Regressors and Predictive Regressions," Computing in Economics and Finance 2005 384, Society for Computational Economics.
    17. Ying Lun Cheung & Uwe Hassler, 2020. "Whittle-type estimation under long memory and nonstationarity," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 363-383, September.
    18. Lasak, Katarzyna, 2010. "Likelihood based testing for no fractional cointegration," Journal of Econometrics, Elsevier, vol. 158(1), pages 67-77, September.
    19. Sophie Achard & Irène Gannaz, 2016. "Multivariate Wavelet Whittle Estimation in Long-range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 476-512, July.
    20. Stengos, Thanasis & Yazgan, M. Ege, 2014. "Persistence In Convergence," Macroeconomic Dynamics, Cambridge University Press, vol. 18(4), pages 753-782, June.

    More about this item

    Keywords

    Finite sample performance comparaison; Fourier frequency; GDP; non-stationary long memory time series; wavelet;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:12008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lucie Label (email available below). General contact details of provider: https://edirc.repec.org/data/cenp1fr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.