IDEAS home Printed from
   My bibliography  Save this paper

Sample Size Requirements for Estimation in SUR Models



This paper explores sample size requirements for the estimation of SUR models by (two-stage) feasible generalized least squares, maximum likelihood and Bayesian methods. It is found that the sample size requirements presented in standard treatments of SUR models are incomplete and potentially misleading. It is also demonstrated that likelihood-based methods potentially require larger sample sizes than does the two-stage estimator considered in this paper.

Suggested Citation

  • Chotikapanich, D. & Griffiths, W.E. & Skeels, C.L., 2001. "Sample Size Requirements for Estimation in SUR Models," Department of Economics - Working Papers Series 794, The University of Melbourne.
  • Handle: RePEc:mlb:wpaper:794

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(03), pages 409-431, August.
    2. Phillips, Peter C B, 1985. "The Exact Distribution of the SUR Estimator," Econometrica, Econometric Society, vol. 53(4), pages 745-756, July.
    3. repec:cup:etheor:v:12:y:1996:i:3:p:409-31 is not listed on IDEAS
    4. Denzil Fiebig & Jae Kim, 2000. "Estimation and inference in sur models when the number of equations is large," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 105-130.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Hendrik Wolff & Thomas Heckelei & Ron Mittelhammer, 2010. "Imposing Curvature and Monotonicity on Flexible Functional Forms: An Efficient Regional Approach," Computational Economics, Springer;Society for Computational Economics, vol. 36(4), pages 309-339, December.
    2. Wolff, Hendrik & Heckelei, Thomas & Mittelhammer, Ronald C., 2004. "Imposing Monotonicity And Curvature On Flexible Functional Forms," 2004 Annual meeting, August 1-4, Denver, CO 20256, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Griffiths, W.E., 2001. "Bayesian Inference in the Seemingly Unrelated Regressions Models," Department of Economics - Working Papers Series 793, The University of Melbourne.
    4. W.E. Griffiths & Ma. Rebecca Valenzuela, 2004. "Gibbs Samplers for a Set of Seemingly Unrelated Regressions," Department of Economics - Working Papers Series 912, The University of Melbourne.

    More about this item



    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mlb:wpaper:794. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Muntasha Meemnun Khan). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.