IDEAS home Printed from https://ideas.repec.org/p/jrp/jrpwrp/2014-004.html
   My bibliography  Save this paper

The Determinants of Decision Time

Author

Listed:
  • Anna Conte

    (Strategic Interaction Group, Max Planck Institute of Economics, Jena, and Department of Economics and Quantitative methods, WBS, University of Westminster)

  • John D. Hey

    (Department of Economics and Related Studies, University of York)

  • Ivan Soraperra

    (Dipartimento di Scienze Economiche, University of Verona,)

Abstract

This paper estimates the determinants of decision time for different types of decision maker in the context of an experimental investigation of multiple prior models of behaviour under ambiguity. Four models are considered: Expected Utility, Smooth, Rank Dependent Expected Utility and Alpha model. The results of a mixture model which assigns subjects to types enable us to distinguish the factors influencing the decision time of each of these four types. We find that the different types are influenced by different factors. In general, the Rank Dependent type takes more time, followed by the Smooth, the Expected Utility and finally the Alpha type, whose decision time is always the lowest. Our results reflect the relative complexity of the preference functionals used by the different types. Consequently, the importance of looking at the process of pairwise choices rather than simply at the choice made is raised to the attention of theorists and analysts.

Suggested Citation

  • Anna Conte & John D. Hey & Ivan Soraperra, 2014. "The Determinants of Decision Time," Jena Economics Research Papers 2014-004, Friedrich-Schiller-University Jena.
  • Handle: RePEc:jrp:jrpwrp:2014-004
    as

    Download full text from publisher

    File URL: https://oweb.b67.uni-jena.de/Papers/jerp2014/wp_2014_004.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johanna Etner & Meglena Jeleva & Jean‐Marc Tallon, 2012. "Decision Theory Under Ambiguity," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 234-270, April.
    2. Peter Moffatt, 2005. "Stochastic Choice and the Allocation of Cognitive Effort," Experimental Economics, Springer;Economic Science Association, vol. 8(4), pages 369-388, December.
    3. Johanna Etner & Meglena Jeleva & Jean‐Marc Tallon, 2012. "Decision Theory Under Ambiguity," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 234-270, April.
    4. Anna Conte & John D. Hey, 2018. "Assessing multiple prior models of behaviour under ambiguity," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 7, pages 169-188, World Scientific Publishing Co. Pte. Ltd..
    5. Peter Klibanoff & Massimo Marinacci & Sujoy Mukerji, 2005. "A Smooth Model of Decision Making under Ambiguity," Econometrica, Econometric Society, vol. 73(6), pages 1849-1892, November.
    6. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Conte, Anna & Scarsini, Marco & Sürücü, Oktay, 2016. "The impact of time limitation: Insights from a queueing experiment," Judgment and Decision Making, Cambridge University Press, vol. 11(3), pages 260-274, May.
    2. Clithero, John A., 2018. "Response times in economics: Looking through the lens of sequential sampling models," Journal of Economic Psychology, Elsevier, vol. 69(C), pages 61-86.
    3. repec:cup:judgdm:v:11:y:2016:i:3:p:260-274 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. A. Franzoni, 2016. "Optimal liability design under risk and ambiguity," Working Papers wp1048, Dipartimento Scienze Economiche, Universita' di Bologna.
    2. Amit Kothiyal & Vitalie Spinu & Peter Wakker, 2014. "An experimental test of prospect theory for predicting choice under ambiguity," Journal of Risk and Uncertainty, Springer, vol. 48(1), pages 1-17, February.
    3. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    4. Robin Cubitt & Gijs Kuilen & Sujoy Mukerji, 2018. "The strength of sensitivity to ambiguity," Theory and Decision, Springer, vol. 85(3), pages 275-302, October.
    5. Eric Giraud-Héraud & Maria Aguiar Fontes & Alexandra Seabra Pinto, 2014. "Crise sanitaires de l'alimentation et analyses comportementales," Working Papers hal-00949126, HAL.
    6. Arthur E. Attema & Han Bleichrodt & Olivier L'Haridon, 2018. "Ambiguity preferences for health," Health Economics, John Wiley & Sons, Ltd., vol. 27(11), pages 1699-1716, November.
    7. Théodora Dupont-Courtade, 2012. "Insurance demand under ambiguity and conflict for extreme risks : Evidence from a large representative survey," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00718642, HAL.
    8. Francesco Cavazza & Francesco Galioto & Meri Raggi & Davide Viaggi, 2020. "Digital Irrigated Agriculture: Towards a Framework for Comprehensive Analysis of Decision Processes under Uncertainty," Future Internet, MDPI, vol. 12(11), pages 1-16, October.
    9. Prokosheva, Sasha, 2016. "Comparing decisions under compound risk and ambiguity: The importance of cognitive skills," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 64(C), pages 94-105.
    10. Enrica Carbone & Konstantinos Georgalos & Gerardo Infante, 2019. "Individual vs. group decision-making: an experiment on dynamic choice under risk and ambiguity," Theory and Decision, Springer, vol. 87(1), pages 87-122, July.
    11. Watanabe, Masahide & Fujimi, Toshio, 2022. "Ambiguity of scientific probability predictions and willingness-to-pay for climate change mitigation policies," Research in Economics, Elsevier, vol. 76(4), pages 386-402.
    12. Carvalho, M., 2011. "Essays in behavioral microeconomic theory," Other publications TiSEM 97fbb10e-5f12-420b-b8c4-e, Tilburg University, School of Economics and Management.
    13. Carvalho, M., 2012. "Static vs Dynamic Auctions with Ambiguity Averse Bidders," Other publications TiSEM 1f078e67-88ec-46e3-ae18-1, Tilburg University, School of Economics and Management.
    14. Théodora Dupont-Courtade, 2012. "Insurance demand under ambiguity and conflict for extreme risks: Evidence from a large representative survey," Documents de travail du Centre d'Economie de la Sorbonne 12020, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    15. Ivan Moscati, 2022. "Behavioral and heuristic models are as-if models too — and that’s ok," BAFFI CAREFIN Working Papers 22177, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    16. Gonçalo Faria & João Correia-da-Silva, 2012. "The price of risk and ambiguity in an intertemporal general equilibrium model of asset prices," Annals of Finance, Springer, vol. 8(4), pages 507-531, November.
    17. Aurélien Baillon & Zhenxing Huang & Asli Selim & Peter P. Wakker, 2018. "Measuring Ambiguity Attitudes for All (Natural) Events," Econometrica, Econometric Society, vol. 86(5), pages 1839-1858, September.
    18. Irenaeus Wolff & Dominik Bauer, 2018. "Elusive Beliefs: Why Uncertainty Leads to Stochastic Choice and Errors," TWI Research Paper Series 111, Thurgauer Wirtschaftsinstitut, Universität Konstanz.
    19. Julian Thimme & Clemens Völkert, 2015. "High order smooth ambiguity preferences and asset prices," Review of Financial Economics, John Wiley & Sons, vol. 27(1), pages 1-15, November.
    20. Johanna Etner & Meglena Jeleva & Natacha Raffin, 2021. "Climate policy: How to deal with ambiguity?," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(1), pages 263-301, July.

    More about this item

    Keywords

    decision time; choice under uncertainty; censored regression;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jrp:jrpwrp:2014-004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Markus Pasche (email available below). General contact details of provider: http://www.jenecon.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.