IDEAS home Printed from https://ideas.repec.org/p/jrp/jrpwrp/2012-055.html
   My bibliography  Save this paper

Lasso-type and Heuristic Strategies in Model Selection and Forecasting

Author

Listed:
  • Ivan Savin

    () (DFG Research Training Program "The Economics of Innovative Change", Friedrich Schiller University Jena and Max Planck Institute of Economics)

  • Peter Winker

    () (Justus Liebig University Giessen, and Centre for European Economic Research, Mannheim)

Abstract

Several approaches for subset recovery and improved forecasting accuracy have been proposed and studied. One way is to apply a regularization strategy and solve the model selection task as a continuous optimization problem. One of the most popular approaches in this research field is given by Lasso-type methods. An alternative approach is based on information criteria. In contrast to the Lasso, these methods also work well in the case of highly correlated predictors. However, this performance can be impaired by the only asymptotic consistency of the information criteria. The resulting discrete optimization problems exhibit a high computational complexity. Therefore, a heuristic optimization approach (Genetic Algorithm) is applied. The two strategies are compared by means of a Monte-Carlo simulation study together with an empirical application to leading business cycle indicators in Russia and Germany.

Suggested Citation

  • Ivan Savin & Peter Winker, 2012. "Lasso-type and Heuristic Strategies in Model Selection and Forecasting," Jena Economic Research Papers 2012-055, Friedrich-Schiller-University Jena.
  • Handle: RePEc:jrp:jrpwrp:2012-055
    as

    Download full text from publisher

    File URL: http://www2.wiwi.uni-jena.de/Papers/jerp2012/wp_2012_055.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    2. Winker, Peter, 1995. "Identification of multivariate AR-models by threshold accepting," Computational Statistics & Data Analysis, Elsevier, vol. 20(3), pages 295-307, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Savin Ivan, 2013. "A Comparative Study of the Lasso-type and Heuristic Model Selection Methods," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(4), pages 526-549, August.
    2. Kascha, Christian & Trenkler, Carsten, 2015. "Forecasting VARs, model selection, and shrinkage," Working Papers 15-07, University of Mannheim, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    2. Eric Hillebrand & Huiyu Huang & Tae-Hwy Lee & Canlin Li, 2018. "Using the Entire Yield Curve in Forecasting Output and Inflation," Econometrics, MDPI, Open Access Journal, vol. 6(3), pages 1-27, August.
    3. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.
    4. Exterkate, Peter & Groenen, Patrick J.F. & Heij, Christiaan & van Dijk, Dick, 2016. "Nonlinear forecasting with many predictors using kernel ridge regression," International Journal of Forecasting, Elsevier, vol. 32(3), pages 736-753.
    5. Ruiz, Esther & Poncela, Pilar, 2012. "More is not always better : back to the Kalman filter in dynamic factor models," DES - Working Papers. Statistics and Econometrics. WS ws122317, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Iftekhar, M. S. & Tisdell, J. G., 2018. "Learning in repeated multiple unit combinatorial auctions: An experimental study," Working Papers 267301, University of Western Australia, School of Agricultural and Resource Economics.
    7. Marie Bessec, 2013. "Short‐Term Forecasts of French GDP: A Dynamic Factor Model with Targeted Predictors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 500-511, September.
    8. Vortelinos, Dimitrios I., 2017. "Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 824-839.
    9. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    10. David Havrlant & Peter Tóth & Julia Wörz, 2016. "On the optimal number of indicators – nowcasting GDP growth in CESEE," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 54-72.
    11. Rachida Ouysse, 2013. "Forecasting using a large number of predictors: Bayesian model averaging versus principal components regression," Discussion Papers 2013-04, School of Economics, The University of New South Wales.
    12. Marie Bessec & Othman Bouabdallah, 2015. "Forecasting GDP over the Business Cycle in a Multi-Frequency and Data-Rich Environment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(3), pages 360-384, June.
    13. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    14. Marijn A. Bolhuis & Brett Rayner, 2020. "Deus ex Machina? A Framework for Macro Forecasting with Machine Learning," IMF Working Papers 20/45, International Monetary Fund.
    15. Aleksandra Riedl & Julia Wörz, 2018. "A simple approach to nowcasting GDP growth in CESEE economies," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q4/18, pages 56-74.
    16. Ouysse, Rachida, 2016. "Bayesian model averaging and principal component regression forecasts in a data rich environment," International Journal of Forecasting, Elsevier, vol. 32(3), pages 763-787.
    17. S. Boragan Aruoba & Francis X. Diebold, 2010. "Real-Time Macroeconomic Monitoring: Real Activity, Inflation, and Interactions," American Economic Review, American Economic Association, vol. 100(2), pages 20-24, May.
    18. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
    19. Matteo Luciani & Lorenzo Ricci, 2014. "Nowcasting Norway," International Journal of Central Banking, International Journal of Central Banking, vol. 10(4), pages 215-248, December.
    20. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, November.

    More about this item

    Keywords

    Adaptive Lasso; Elastic net; Forecasting; Genetic algorithms; Heuristic methods; Lasso; Model selection;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jrp:jrpwrp:2012-055. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Markus Pasche). General contact details of provider: http://www.wiwiss.uni-jena.de/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.