Lasso-type and Heuristic Strategies in Model Selection and Forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Ivan Savin & Peter Winker, 2012.
"Heuristic Optimization Methods for Dynamic Panel Data Model Selection: Application on the Russian Innovative Performance,"
Computational Economics, Springer;Society for Computational Economics, vol. 39(4), pages 337-363, April.
- Ivan Savin & Peter Winker, 2010. "Heuristic Optimization Methods for Dynamic Panel Data Model Selection. Application on the Russian Innovative Performance," Working Papers 027, COMISEF.
- Teodosio Perez‐Amaral & Giampiero M. Gallo & Halbert White, 2003.
"A Flexible Tool for Model Building: the Relevant Transformation of the Inputs Network Approach (RETINA),"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 821-838, December.
- Halbert L. White & Giampiero M. Gallo & Teodosio Pérez Amaral, 2002. "A flexible Tool for Model Building: the Relevant Transformation of the Inputs Network Approach (RETINA)," Documentos de Trabajo del ICAE 0201, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Teodosio Perez-Amaral & Giampiero M. Gallo & Halbert White, 2003. "Flexible Tool for Model Building: the Relevant Transformation of the Inputs Network Approach (RETINA)," Documentos de Trabajo del ICAE 0309, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Teodosio Perez-Amaral & Giampiero M. Gallo & Halbert L. White, 2003. "A Flexible Tool for Model Building: the Relevant Transformation of the Inputs Network Approach (RETINA)," Econometrics Working Papers Archive wp2003_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
- Winker, Peter, 1995.
"Identification of multivariate AR-models by threshold accepting,"
Computational Statistics & Data Analysis, Elsevier, vol. 20(3), pages 295-307, September.
- Winker, Peter, 1994. "Identification of multivariate AR-models by threshold accepting," Discussion Papers, Series II 224, University of Konstanz, Collaborative Research Centre (SFB) 178 "Internationalization of the Economy".
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Savin Ivan, 2013.
"A Comparative Study of the Lasso-type and Heuristic Model Selection Methods,"
Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(4), pages 526-549, August.
- Ivan Savin, 2010. "A comparative study of the Lasso-type and heuristic model selection methods," Working Papers 042, COMISEF.
- Kascha, Christian & Trenkler, Carsten, 2015. "Forecasting VARs, model selection, and shrinkage," Working Papers 15-07, University of Mannheim, Department of Economics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sachs, Andreas & Schleer, Frauke, 2013. "Labour market performance in OECD countries: A comprehensive empirical modelling approach of institutional interdependencies," ZEW Discussion Papers 13-040, ZEW - Leibniz Centre for European Economic Research.
- Andreas Sachs & Frauke Schleer, 2013. "Labour Market Performance in OECD Countries: A Comprehensive Empirical Modelling Approach of Institutional Interdependencies. WWWforEurope Working Paper No. 7," WIFO Studies, WIFO, number 46851.
- Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024.
"Daily growth at risk: Financial or real drivers? The answer is not always the same,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
- Helena Chuliá & Ignacio Garrón & Jorge M. Uribe, 2022. ""Daily Growth at Risk: financial or real drivers? The answer is not always the same"," IREA Working Papers 202208, University of Barcelona, Research Institute of Applied Economics, revised Jun 2022.
- Norman R. Swanson & Weiqi Xiong, 2018.
"Big data analytics in economics: What have we learned so far, and where should we go from here?,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
- Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics, Canadian Economics Association, vol. 51(3), pages 695-746, August.
- Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
- Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2016. "Forecasting macroeconomic variables in data-rich environments," Economics Letters, Elsevier, vol. 138(C), pages 50-52.
- Liu, Guangqiang & Guo, Xiaozhu, 2022. "Forecasting stock market volatility using commodity futures volatility information," Resources Policy, Elsevier, vol. 75(C).
- Marcelo C. Medeiros & Eduardo F. Mendes, 2015. "l1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations," Textos para discussão 636, Department of Economics PUC-Rio (Brazil).
- Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
- Mogliani, Matteo & Simoni, Anna, 2021.
"Bayesian MIDAS penalized regressions: Estimation, selection, and prediction,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
- Matteo Mogliani & Anna Simoni, 2019. "Bayesian MIDAS Penalized Regressions: Estimation, Selection, and Prediction," Papers 1903.08025, arXiv.org, revised Jun 2020.
- Matteo Mogliani & Anna Simoni, 2020. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Post-Print hal-03089878, HAL.
- Matteo Mogliani, 2019. "Bayesian MIDAS penalized regressions: estimation, selection, and prediction," Working papers 713, Banque de France.
- Saulius Jokubaitis & Dmitrij Celov & Remigijus Leipus, 2019. "Sparse structures with LASSO through Principal Components: forecasting GDP components in the short-run," Papers 1906.07992, arXiv.org, revised Oct 2020.
- Mikhail Gareev, 2020. "Use of Machine Learning Methods to Forecast Investment in Russia," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 35-56, March.
- Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 752-789, Elsevier.
- Savin Ivan, 2013.
"A Comparative Study of the Lasso-type and Heuristic Model Selection Methods,"
Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(4), pages 526-549, August.
- Ivan Savin, 2010. "A comparative study of the Lasso-type and heuristic model selection methods," Working Papers 042, COMISEF.
- Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023.
"Targeting predictors in random forest regression,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N. Mühlbach & Mikkel S. Nielsen, 2020. "Targeting predictors in random forest regression," CREATES Research Papers 2020-03, Department of Economics and Business Economics, Aarhus University.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N{o}rgaard Muhlbach & Mikkel Slot Nielsen, 2020. "Targeting predictors in random forest regression," Papers 2004.01411, arXiv.org, revised Nov 2020.
- Jing-Zhi Huang & Zhan Shi, 2023. "Machine-Learning-Based Return Predictors and the Spanning Controversy in Macro-Finance," Management Science, INFORMS, vol. 69(3), pages 1780-1804, March.
- Smeekes, Stephan & Wijler, Etienne, 2018.
"Macroeconomic forecasting using penalized regression methods,"
International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Smeekes, Stephan & Wijler, Etiënne, 2016. "Macroeconomic Forecasting Using Penalized Regression Methods," Research Memorandum 039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023.
"Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models,"
Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
- Gustavo Silva Araujo & Wagner Piazza Gaglianone, 2022. "Machine Learning Methods for Inflation Forecasting in Brazil: new contenders versus classical models," Working Papers Series 561, Central Bank of Brazil, Research Department.
- Olivier Fortin‐Gagnon & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"A large Canadian database for macroeconomic analysis,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(4), pages 1799-1833, November.
- Olivier Fortin-Gagnon & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2018. "A Large Canadian Database for Macroeconomic Analysis," CIRANO Working Papers 2018s-25, CIRANO.
- Olivier Fortin-Gagnon & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "A Large Canadian Database for Macroeconomic Analysis," Working Papers 20-07, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
- Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
More about this item
Keywords
Adaptive Lasso; Elastic net; Forecasting; Genetic algorithms; Heuristic methods; Lasso; Model selection;All these keywords.
JEL classification:
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CIS-2012-10-20 (Confederation of Independent States)
- NEP-CMP-2012-10-20 (Computational Economics)
- NEP-ECM-2012-10-20 (Econometrics)
- NEP-FOR-2012-10-20 (Forecasting)
- NEP-ORE-2012-10-20 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jrp:jrpwrp:2012-055. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Markus Pasche (email available below). General contact details of provider: http://www.jenecon.de .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.