IDEAS home Printed from https://ideas.repec.org/p/jrp/jrpwrp/2012-055.html
   My bibliography  Save this paper

Lasso-type and Heuristic Strategies in Model Selection and Forecasting

Author

Listed:
  • Ivan Savin

    (DFG Research Training Program "The Economics of Innovative Change", Friedrich Schiller University Jena and Max Planck Institute of Economics)

  • Peter Winker

    (Justus Liebig University Giessen, and Centre for European Economic Research, Mannheim)

Abstract

Several approaches for subset recovery and improved forecasting accuracy have been proposed and studied. One way is to apply a regularization strategy and solve the model selection task as a continuous optimization problem. One of the most popular approaches in this research field is given by Lasso-type methods. An alternative approach is based on information criteria. In contrast to the Lasso, these methods also work well in the case of highly correlated predictors. However, this performance can be impaired by the only asymptotic consistency of the information criteria. The resulting discrete optimization problems exhibit a high computational complexity. Therefore, a heuristic optimization approach (Genetic Algorithm) is applied. The two strategies are compared by means of a Monte-Carlo simulation study together with an empirical application to leading business cycle indicators in Russia and Germany.

Suggested Citation

  • Ivan Savin & Peter Winker, 2012. "Lasso-type and Heuristic Strategies in Model Selection and Forecasting," Jena Economics Research Papers 2012-055, Friedrich-Schiller-University Jena.
  • Handle: RePEc:jrp:jrpwrp:2012-055
    as

    Download full text from publisher

    File URL: https://oweb.b67.uni-jena.de/Papers/jerp2012/wp_2012_055.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Ivan Savin & Peter Winker, 2012. "Heuristic Optimization Methods for Dynamic Panel Data Model Selection: Application on the Russian Innovative Performance," Computational Economics, Springer;Society for Computational Economics, vol. 39(4), pages 337-363, April.
    3. Teodosio Perez‐Amaral & Giampiero M. Gallo & Halbert White, 2003. "A Flexible Tool for Model Building: the Relevant Transformation of the Inputs Network Approach (RETINA)," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 821-838, December.
    4. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    5. Winker, Peter, 1995. "Identification of multivariate AR-models by threshold accepting," Computational Statistics & Data Analysis, Elsevier, vol. 20(3), pages 295-307, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Savin Ivan, 2013. "A Comparative Study of the Lasso-type and Heuristic Model Selection Methods," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(4), pages 526-549, August.
    2. Kascha, Christian & Trenkler, Carsten, 2015. "Forecasting VARs, model selection, and shrinkage," Working Papers 15-07, University of Mannheim, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sachs, Andreas & Schleer, Frauke, 2013. "Labour market performance in OECD countries: A comprehensive empirical modelling approach of institutional interdependencies," ZEW Discussion Papers 13-040, ZEW - Leibniz Centre for European Economic Research.
    2. Andreas Sachs & Frauke Schleer, 2013. "Labour Market Performance in OECD Countries: A Comprehensive Empirical Modelling Approach of Institutional Interdependencies. WWWforEurope Working Paper No. 7," WIFO Studies, WIFO, number 46851.
    3. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    4. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    5. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    6. Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2016. "Forecasting macroeconomic variables in data-rich environments," Economics Letters, Elsevier, vol. 138(C), pages 50-52.
    7. Liu, Guangqiang & Guo, Xiaozhu, 2022. "Forecasting stock market volatility using commodity futures volatility information," Resources Policy, Elsevier, vol. 75(C).
    8. Marcelo C. Medeiros & Eduardo F. Mendes, 2015. "l1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations," Textos para discussão 636, Department of Economics PUC-Rio (Brazil).
    9. Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
    10. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    11. Saulius Jokubaitis & Dmitrij Celov & Remigijus Leipus, 2019. "Sparse structures with LASSO through Principal Components: forecasting GDP components in the short-run," Papers 1906.07992, arXiv.org, revised Oct 2020.
    12. Mikhail Gareev, 2020. "Use of Machine Learning Methods to Forecast Investment in Russia," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 35-56, March.
    13. Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 752-789, Elsevier.
    14. Savin Ivan, 2013. "A Comparative Study of the Lasso-type and Heuristic Model Selection Methods," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(4), pages 526-549, August.
    15. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    16. Jing-Zhi Huang & Zhan Shi, 2023. "Machine-Learning-Based Return Predictors and the Spanning Controversy in Macro-Finance," Management Science, INFORMS, vol. 69(3), pages 1780-1804, March.
    17. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
    18. Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023. "Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
    19. Olivier Fortin‐Gagnon & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "A large Canadian database for macroeconomic analysis," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(4), pages 1799-1833, November.
    20. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.

    More about this item

    Keywords

    Adaptive Lasso; Elastic net; Forecasting; Genetic algorithms; Heuristic methods; Lasso; Model selection;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jrp:jrpwrp:2012-055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Markus Pasche (email available below). General contact details of provider: http://www.jenecon.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.