IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp91.html
   My bibliography  Save this paper

Identification and Estimation of Causal Effects of Multiple Treatments Under the Conditional Independence Assumption

Author

Listed:
  • Lechner, Michael

    (University of St. Gallen)

Abstract

The assumption that the assignment to treatments is ignorable conditional on attributes plays an important role in the applied statistic and econometric evaluation literature. Another term for it is conditional independence assumption. This paper discusses identification when there are more than two types of mutually exclusive treatments. It turns out that low dimensional balancing scores, similar to the ones valid in the case of only two treatments, exist and be used for identification of various causal effects. Therefore, a comparable reduction of the dimension of the estimation problem is achieved and the approach retains its basic simplicity. The paper also outlines a matching estimator potentially suitable in that framework.

Suggested Citation

  • Lechner, Michael, 1999. "Identification and Estimation of Causal Effects of Multiple Treatments Under the Conditional Independence Assumption," IZA Discussion Papers 91, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp91
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp91.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    2. Lechner, Michael, 1999. "Earnings and Employment Effects of Continuous Off-the-Job Training in East Germany after Unification," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 74-90, January.
    3. Joshua D. Angrist, 1998. "Estimating the Labor Market Impact of Voluntary Military Service Using Social Security Data on Military Applicants," Econometrica, Econometric Society, vol. 66(2), pages 249-288, March.
    4. A. D. Roy, 1951. "Some Thoughts On The Distribution Of Earnings," Oxford Economic Papers, Oxford University Press, vol. 3(2), pages 135-146.
    5. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    6. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    7. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    8. Guido W. Imbens, 1999. "The Role of the Propensity Score in Estimating Dose-Response Functions," NBER Technical Working Papers 0237, National Bureau of Economic Research, Inc.
    9. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jochen Kluve & Boris Augurzky, 2007. "Assessing the performance of matching algorithms when selection into treatment is strong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(3), pages 533-557.
    2. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    3. Michael Lechner, 2002. "Some practical issues in the evaluation of heterogeneous labour market programmes by matching methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 165(1), pages 59-82, February.
    4. Hämäläinen, Kari & Ollikainen, Virve, 2004. "Differential Effects of Active Labour Market Programmes in the Early Stages of Young People's Unemployment," Research Reports 115, VATT Institute for Economic Research.
    5. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    6. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    7. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    8. Barbara Sianesi, 2002. "An evaluation of the Swedish system of active labour market programmes in the 1990s," IFS Working Papers W02/01, Institute for Fiscal Studies.
    9. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    10. Lechner, Michael, 2004. "Sequential Matching Estimation of Dynamic Causal Models," IZA Discussion Papers 1042, Institute of Labor Economics (IZA).
    11. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
    12. Michael Lechner, 2000. "Programme Heterogeneity and Propensity Score Matching: An Application to the Evaluation of Active Labour Market Policies," Econometric Society World Congress 2000 Contributed Papers 0647, Econometric Society.
    13. Michael Gerfin & Michael Lechner, 2002. "A Microeconometric Evaluation of the Active Labour Market Policy in Switzerland," Economic Journal, Royal Economic Society, vol. 112(482), pages 854-893, October.
    14. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    15. Dettmann, Eva & Becker, Claudia & Schmeißer, Christian, 2010. "Is there a Superior Distance Function for Matching in Small Samples?," IWH Discussion Papers 3/2010, Halle Institute for Economic Research (IWH).
    16. Markus Frölich, 2004. "Programme Evaluation with Multiple Treatments," Journal of Economic Surveys, Wiley Blackwell, vol. 18(2), pages 181-224, April.
    17. Czarnitzki, Dirk & Lopes-Bento, Cindy, 2013. "Value for money? New microeconometric evidence on public R&D grants in Flanders," Research Policy, Elsevier, vol. 42(1), pages 76-89.
    18. Czarnitzki, Dirk & Hanel, Petr & Rosa, Julio Miguel, 2011. "Evaluating the impact of R&D tax credits on innovation: A microeconometric study on Canadian firms," Research Policy, Elsevier, vol. 40(2), pages 217-229, March.
    19. Hottenrott, Hanna & Lopes-Bento, Cindy, 2014. "(International) R&D collaboration and SMEs: The effectiveness of targeted public R&D support schemes," Research Policy, Elsevier, vol. 43(6), pages 1055-1066.
    20. Ham, John C. & Li, Xianghong & Reagan, Patricia B., 2011. "Matching and semi-parametric IV estimation, a distance-based measure of migration, and the wages of young men," Journal of Econometrics, Elsevier, vol. 161(2), pages 208-227, April.

    More about this item

    Keywords

    causal model; propensity score; balancing score; Treatment effects; program evaluation; matching;
    All these keywords.

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.