IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Estimating a Class of Triangular Simultaneous Equations Models Without Exclusion Restrictions

  • Klein, Roger

    ()

    (Rutgers University)

  • Vella, Francis

    ()

    (Georgetown University)

This paper provides a control function estimator to adjust for endogeneity in the triangular simultaneous equations model where there are no available exclusion restrictions to generate suitable instruments. Our approach is to exploit the dependence of the errors on exogenous variables (e.g. heteroscedasticity) to adjust the conventional control function estimator. The form of the error dependence on the exogenous variables is subject to restrictions, but is not parametrically specified. In addition to providing the estimator and deriving its large-sample properties, we present simulation evidence which indicates the estimator works well.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://ftp.iza.org/dp2378.pdf
Download Restriction: no

Paper provided by Institute for the Study of Labor (IZA) in its series IZA Discussion Papers with number 2378.

as
in new window

Length: 56 pages
Date of creation: Oct 2006
Date of revision:
Publication status: published in: Journal of Econometrics, 2010, 154 (2), 154-164
Handle: RePEc:iza:izadps:dp2378
Contact details of provider: Postal: IZA, P.O. Box 7240, D-53072 Bonn, Germany
Phone: +49 228 3894 223
Fax: +49 228 3894 180
Web page: http://www.iza.org

Order Information: Postal: IZA, Margard Ody, P.O. Box 7240, D-53072 Bonn, Germany
Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Roberto Rigobon, 2003. "Identification Through Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 777-792, November.
  2. Roger Klein & Francis Vella, 2009. "A semiparametric model for binary response and continuous outcomes under index heteroscedasticity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 735-762.
  3. Dagenais, Marcel G. & Dagenais, Denyse L., 1997. "Higher moment estimators for linear regression models with errors in the variables," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 193-221.
  4. Arthur Lewbel, 1997. "Constructing Instruments for Regressions with Measurement Error when no Additional Data are Available, with an Application to Patents and R&D," Econometrica, Econometric Society, vol. 65(5), pages 1201-1214, September.
  5. Newey, Whitney K. & McFadden, Daniel, 1986. "Large sample estimation and hypothesis testing," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 36, pages 2111-2245 Elsevier.
  6. Whitney K. Newey & Fushing Hsieh & James M. Robins, 2004. "Twicing Kernels and a Small Bias Property of Semiparametric Estimators," Econometrica, Econometric Society, vol. 72(3), pages 947-962, 05.
  7. Klein, R.W., 1991. "Specification Tests for Binery Choice Models Based on Index Quantiles," Papers 71, Bell Communications - Economic Research Group.
  8. Sentana, E. & Fiorentini, G., 1997. "Identification, Estimation and Testing of Conditionally Heteroskedastic Factor Model," Papers 9709, Centro de Estudios Monetarios Y Financieros-.
  9. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
  10. Rummery, Sarah & Vella, Francis & Verbeek, Marno, 1999. "Estimating the returns to education for Australian youth via rank-order instrumental variables," Labour Economics, Elsevier, vol. 6(4), pages 491-507, November.
  11. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
  12. Powell, James L. & Stock, James H. & Stoker, Thomas M., 1986. "Semiparametric estimation of weighted average derivatives," Working papers 1793-86., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  13. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-57, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp2378. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Fallak)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.