IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp15713.html

The Future Economics of Artificial Intelligence: Mythical Agents, a Singleton and the Dark Forest

Author

Listed:
  • Naudé, Wim

    (RWTH Aachen University)

Abstract

This paper contributes to the economics of AI by exploring three topics neglected by economists: (i) the notion of a Singularity (and Singleton), (ii) the existential risks that AI may pose to humanity, including that from an extraterrestrial AI in a Dark Forest universe; and (iii) the relevance of economics' Mythical Agent (homo economicus) for the design of value-aligned AI-systems. From the perspective of expected utility maximization, which both the fields of AI and economics share, these three topics are interrelated. By exploring these topics, several future avenues for economic research on AI becomes apparent, and areas where economic theory may benefit from a greater understanding of AI can be identified. Two further conclusions that emerge are first that a Singularity and existential risk from AI are still science fiction: which, however, should not preclude economics from bearing on the issues (it does not deter philosophers); and two, that economists should weigh in more on existential risk, and not leave this topic to lose credibility because of the Pascalian fanaticism of longtermism.

Suggested Citation

  • Naudé, Wim, 2022. "The Future Economics of Artificial Intelligence: Mythical Agents, a Singleton and the Dark Forest," IZA Discussion Papers 15713, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp15713
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp15713.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Baranzini & Francois Bourguignon, 1995. "Is sustainable growth optimal?," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 2(2), pages 341-356, August.
    2. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    3. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    4. Arrow, Kenneth J, 1994. "Methodological Individualism and Social Knowledge," American Economic Review, American Economic Association, vol. 84(2), pages 1-9, May.
    5. Balland, Pierre-Alexandre & Broekel, Tom & Diodato, Dario & Giuliani, Elisa & Hausmann, Ricardo & O'Clery, Neave & Rigby, David, 2022. "Reprint of The new paradigm of economic complexity," Research Policy, Elsevier, vol. 51(8).
    6. Balland, Pierre-Alexandre & Broekel, Tom & Diodato, Dario & Giuliani, Elisa & Hausmann, Ricardo & O'Clery, Neave & Rigby, David, 2022. "The new paradigm of economic complexity," Research Policy, Elsevier, vol. 51(3).
    7. Ajay Agrawal & John McHale & Alexander Oettl, 2018. "Finding Needles in Haystacks: Artificial Intelligence and Recombinant Growth," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 149-174, National Bureau of Economic Research, Inc.
    8. Ahiska, S. Sebnem & Appaji, Samyuktha R. & King, Russell E. & Warsing, Donald P., 2013. "A Markov decision process-based policy characterization approach for a stochastic inventory control problem with unreliable sourcing," International Journal of Production Economics, Elsevier, vol. 144(2), pages 485-496.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naudé, Wim, 2023. "Melancholy Hues: The Futility of Green Growth and Degrowth, and the Inevitability of Societal Collapse," IZA Discussion Papers 16139, Institute of Labor Economics (IZA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nutarelli, Federico & Edet, Samuel & Gnecco, Giorgio & Riccaboni, Massimo, 2025. "Predicting the technological complexity of global cities based on unsupervised and supervised machine learning methods," Journal of Economic Behavior & Organization, Elsevier, vol. 234(C).
    2. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    3. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Labib Shami & Teddy Lazebnik, 2024. "Implementing Machine Learning Methods in Estimating the Size of the Non-observed Economy," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1459-1476, April.
    5. Hurmeranta, Risto & Lyytikäinen, Teemu, 2025. "Nominal Loss Aversion in the Housing Market and Household Mobility," Working Papers 178, VATT Institute for Economic Research.
    6. Chen, Ruoyu & Jiang, Hanchen & Quintero, Luis E., 2023. "Measuring the value of rent stabilization and understanding its implications for racial inequality: Evidence from New York City," Regional Science and Urban Economics, Elsevier, vol. 103(C).
    7. Dang, Hai-Anh & Carleto, Gero & Gourlay, Sydney & Abanokova, Kseniya, 2023. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," 2023 Annual Meeting, July 23-25, Washington D.C. 335648, Agricultural and Applied Economics Association.
    8. Dangxing Chen & Luyao Zhang, 2023. "Monotonicity for AI ethics and society: An empirical study of the monotonic neural additive model in criminology, education, health care, and finance," Papers 2301.07060, arXiv.org.
    9. Ballestar, María Teresa & Mir, Miguel Cuerdo & Pedrera, Luis Miguel Doncel & Sainz, Jorge, 2024. "Effectiveness of tutoring at school: A machine learning evaluation," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    10. Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Regional Science and Urban Economics, Elsevier, vol. 94(C).
    11. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    12. Arenas, Andreu & Calsamiglia, Caterina, 2022. "Gender Differences in High-Stakes Performance and College Admission Policies," IZA Discussion Papers 15550, Institute of Labor Economics (IZA).
    13. Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," MPRA Paper 110703, University Library of Munich, Germany.
    14. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    16. Rama K. Malladi, 2024. "Benchmark Analysis of Machine Learning Methods to Forecast the U.S. Annual Inflation Rate During a High-Decile Inflation Period," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 335-375, July.
    17. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    18. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    19. Hannes Wallimann & Silvio Sticher, 2023. "On suspicious tracks: machine-learning based approaches to detect cartels in railway-infrastructure procurement," Papers 2304.11888, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • D01 - Microeconomics - - General - - - Microeconomic Behavior: Underlying Principles
    • D64 - Microeconomics - - Welfare Economics - - - Altruism; Philanthropy; Intergenerational Transfers

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp15713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.