IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp15077.html
   My bibliography  Save this paper

Breakthroughs, Backlashes and Artificial General Intelligence: An Extended Real Options Approach

Author

Listed:
  • Gries, Thomas

    (University of Paderborn)

  • Naudé, Wim

    (RWTH Aachen University)

Abstract

Breakthroughs and backlashes have marked progress in the development and diffusion of Artificial Intelligence (AI). These shocks make the investment in developing an Artificial General Intelligence (AGI) subject to considerable uncertainty. This paper applies a real options model, extended to account for stochastic jumps, to model the consequences of these breakthroughs and backlashes characterising on investment for an AGI. The model analytics indicate that the average magnitude and frequency of stochastic jumps will determine the optimum amount of time and money to invest in pursuing an AGI and that these may be too expensive and time-consuming for most private entrepreneurs.

Suggested Citation

  • Gries, Thomas & Naudé, Wim, 2022. "Breakthroughs, Backlashes and Artificial General Intelligence: An Extended Real Options Approach," IZA Discussion Papers 15077, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp15077
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp15077.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mariana Mazzucato, 2018. "Mission-oriented innovation policies: challenges and opportunities," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 27(5), pages 803-815.
    2. Bilkic, N. & Gries, T. & Pilichowski, M., 2012. "Stay in school or start working? — The human capital investment decision under uncertainty and irreversibility," Labour Economics, Elsevier, vol. 19(5), pages 706-717.
    3. Ning Cai & S. G. Kou, 2011. "Option Pricing Under a Mixed-Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 57(11), pages 2067-2081, November.
    4. Jorgensen, Steffen & Kort, Peter M. & Dockner, Engelbert J., 2006. "Venture capital financed investments in intellectual capital," Journal of Economic Dynamics and Control, Elsevier, vol. 30(11), pages 2339-2361, November.
    5. Dixit, Avinash K, 1989. "Entry and Exit Decisions under Uncertainty," Journal of Political Economy, University of Chicago Press, vol. 97(3), pages 620-638, June.
    6. Farzin, Y. H. & Huisman, K. J. M. & Kort, P. M., 1998. "Optimal timing of technology adoption," Journal of Economic Dynamics and Control, Elsevier, vol. 22(5), pages 779-799, May.
    7. Pierre Azoulay & Benjamin F. Jones & J. Daniel Kim & Javier Miranda, 2020. "Age and High-Growth Entrepreneurship," American Economic Review: Insights, American Economic Association, vol. 2(1), pages 65-82, March.
    8. Peter N. Golder & Rachel Shacham & Debanjan Mitra, 2009. "—Innovations' Origins: When, By Whom, and How Are Radical Innovations Developed?," Marketing Science, INFORMS, vol. 28(1), pages 166-179, 01-02.
    9. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    10. Gautam Ahuja & Curba Morris Lampert, 2001. "Entrepreneurship in the large corporation: a longitudinal study of how established firms create breakthrough inventions," Strategic Management Journal, Wiley Blackwell, vol. 22(6‐7), pages 521-543, June.
    11. Nick Bostrom, 2017. "Strategic Implications of Openness in AI Development," Global Policy, London School of Economics and Political Science, vol. 8(2), pages 135-148, May.
    12. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    13. Natasha Bilkic & Thomas Gries & Margarethe Pilichowski, 2009. "Stay at school or start working? - Optimal timing of leaving school under uncertainty and irreversibility," Working Papers CIE 10, Paderborn University, CIE Center for International Economics.
    14. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    15. Whalley, A. Elizabeth, 2011. "Optimal R&D investment for a risk-averse entrepreneur," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 413-429, April.
    16. Jang, Jiwook, 2007. "Jump diffusion processes and their applications in insurance and finance," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 62-70, July.
    17. Samuel Cox & Hal Pedersen, 2000. "Catastrophe Risk Bonds," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(4), pages 56-82.
    18. Yang, Hailiang & Zhang, Lihong, 2005. "Optimal investment for insurer with jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 615-634, December.
    19. Doraszelski, Ulrich, 2001. "The net present value method versus the option value of waiting: A note on Farzin, Huisman and Kort (1998)," Journal of Economic Dynamics and Control, Elsevier, vol. 25(8), pages 1109-1115, August.
    20. Freeman, Chris, 1994. "The Economics of Technical Change," Cambridge Journal of Economics, Oxford University Press, vol. 18(5), pages 463-514, October.
    21. Sarkar, Sudipto, 2000. "On the investment-uncertainty relationship in a real options model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(2), pages 219-225, February.
    22. Bilkic, Natasa & Gries, Thomas & Naudé, Wim, 2013. "The Radical Innovation Investment Decision Refined," IZA Discussion Papers 7338, Institute of Labor Economics (IZA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bilkic, Natasa & Gries, Thomas & Naudé, Wim, 2013. "The Radical Innovation Investment Decision Refined," IZA Discussion Papers 7338, Institute of Labor Economics (IZA).
    2. Thomas Gries & Natasa Bilkic, 2014. "Investment under Threat of Disaster," Working Papers CIE 77, Paderborn University, CIE Center for International Economics.
    3. Lee, Sangjun & Zhao, Jinhua, 2021. "Adaptation to climate change: Extreme events versus gradual changes," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
    4. Marseguerra, Giovanni & Cortelezzi, Flavia & Dominioni, Armando, 2006. "Investment timing decisions in a stochastic duopoly model," Chaos, Solitons & Fractals, Elsevier, vol. 29(3), pages 611-625.
    5. José Azevedo‐Pereira & Gualter Couto & Cláudia Nunes, 2010. "Optimal timing of relocation," International Journal of Managerial Finance, Emerald Group Publishing Limited, vol. 6(2), pages 143-163, April.
    6. Jean-Paul Décamps & Thomas Mariotti & Stéphane Villeneuve, 2006. "Irreversible investment in alternative projects," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(2), pages 425-448, June.
    7. Rena Sivitanidou, 1999. "Does the Theory of Irreversible Investments Help Explain Movements in Office-Commerical Construction?," Working Paper 8659, USC Lusk Center for Real Estate.
    8. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.
    9. Jin-Yu Zhang & Wen-Bo Wu & Yong Li & Zhu-Sheng Lou, 2021. "Pricing Exotic Option Under Jump-Diffusion Models by the Quadrature Method," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 867-884, October.
    10. Michael C. Fu & Bingqing Li & Guozhen Li & Rongwen Wu, 2017. "Option Pricing for a Jump-Diffusion Model with General Discrete Jump-Size Distributions," Management Science, INFORMS, vol. 63(11), pages 3961-3977, November.
    11. Zhao, Pan & Pan, Jian & Yue, Qin & Zhang, Jinbo, 2021. "Pricing of financial derivatives based on the Tsallis statistical theory," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
    13. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    14. Lu, Jin-Ray & Hwang, Chih-Chiang & Lin, Chien-Yi, 2016. "Do shareholders appreciate capital investment policies of corporations?," International Review of Economics & Finance, Elsevier, vol. 43(C), pages 344-353.
    15. Sendstad, Lars Hegnes & Chronopoulos, Michail, 2017. "Strategic Technology Switching under Risk Aversion and Uncertainty," Discussion Papers 2017/10, Norwegian School of Economics, Department of Business and Management Science.
    16. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    17. Nunes, Cláudia & Oliveira, Carlos & Pimentel, Rita, 2021. "Quasi-analytical solution of an investment problem with decreasing investment cost due to technological innovations," Journal of Economic Dynamics and Control, Elsevier, vol. 130(C).
    18. Neha Deopa & Daniele Rinaldo, 2019. "Firm Decisions under Jump-Diffusive Dynamics," IHEID Working Papers 04-2019, Economics Section, The Graduate Institute of International Studies, revised 21 Mar 2019.
    19. Helin Zhu & Fan Ye & Enlu Zhou, 2015. "Fast estimation of true bounds on Bermudan option prices under jump-diffusion processes," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1885-1900, November.
    20. Dagmar Nelissen & Till Requate, 2007. "Pollution-reducing and resource-saving technological progress," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 6(1), pages 5-44.

    More about this item

    Keywords

    radical innovation; real option models; artificial intelligence; risk;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp15077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.