IDEAS home Printed from https://ideas.repec.org/p/ipt/iptwpa/jrc100509.html
   My bibliography  Save this paper

Capacity assessment of railway infrastructure: Tools, methodologies and policy relevance in the EU context

Author

Listed:

Abstract

The transport sector is increasingly faced with several issues related to the rising of traffic demand such as congestion, energy consumption, noise, pollution, safety, etc.. Due to its low external and environmental costs, railway can be considered (together with inland waterways and short-sea-shipping) as a key factor for the sustainable development of a more competitive and resource-efficient transport system (European Commission, White Paper 2011). In order to reinforce the role of rail in European transport, there is a strong need of addressing the efficiency of the system and customers' satisfaction through targeted actions, i.e. rising reliability and quality of service. This becomes particularly pressing as many parts of the existing railway infrastructures are reaching their maximum capacity thus shrinking their capability to provide users and customers a higher or even adequate level of service. Taking also into account that transport demand forecasts for 2030 clearly show a marked increase of rail activity across the whole Europe, we aim to address the issue of rail congestion in the context of relevant policy questions: Is the actual rail Infrastructure really able to absorb forecasted traffic, without significant impacts on punctuality of the system? Would the already planned interventions on the European railway infrastructure guarantee an adequate available capacity and consequently adequate reliability and level of service? To which extent would the coveted competition in an open railway market be influenced by capacity scarcity, mainly during peak hours or along more profitable corridors? An accurate estimation of capacity of the rail network can help answer these questions, leading policy makers to better decisions and helping to minimize costs for users. In this context this report explores the issue of capacity scarcity and sets this issue in the context of other relevant policy issues (track access charges, cost/benefit and accessibility measures, maintenance programmes, freight services’ reliability, external, marginal congestion or scarcity cost for rail, impacts of climate changes, etc.), providing a methodological review of capacity and punctuality assessment procedures. To better explore the real applicability and the time and/or data constraints of each methodology, the study reports some practical applications to the European railway network. Finally in the last section the report discusses the topic from a modelling perspective, as the quantitative estimation of railway capacity constraints is a key issue in order to provide better support to transport policies at EU level.

Suggested Citation

  • Francesco Rotoli & Elena Navajas Cawood & Antonio Soria, 2016. "Capacity assessment of railway infrastructure: Tools, methodologies and policy relevance in the EU context," JRC Research Reports JRC100509, Joint Research Centre.
  • Handle: RePEc:ipt:iptwpa:jrc100509
    as

    Download full text from publisher

    File URL: https://publications.jrc.ec.europa.eu/repository/handle/JRC100509
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mussone, Lorenzo & Wolfler Calvo, Roberto, 2013. "An analytical approach to calculate the capacity of a railway system," European Journal of Operational Research, Elsevier, vol. 228(1), pages 11-23.
    2. Stephen Gibson & Grahame Cooper & Brian Ball, 2002. "Developments in Transport Policy: The Evolution of Capacity Charges on the UK Rail Network," Journal of Transport Economics and Policy, University of Bath, vol. 36(2), pages 341-354, May.
    3. Schmöcker, Jan-Dirk & Bell, Michael G.H. & Kurauchi, Fumitaka, 2008. "A quasi-dynamic capacity constrained frequency-based transit assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 925-945, December.
    4. Huisman, Tijs & Boucherie, Richard J. & van Dijk, Nico M., 2002. "A solvable queueing network model for railway networks and its validation and applications for the Netherlands," European Journal of Operational Research, Elsevier, vol. 142(1), pages 30-51, October.
    5. Martijn Brons & Panayotis Christidis, 2012. "External cost calculator for Marco Polo freight transport project proposals call 2012 version," JRC Research Reports JRC72879, Joint Research Centre.
    6. Jansson, Kjell & Lang, Harald, 2013. "Rail infrastructure charging EU-directive, Swedish concerns and theory," Research in Transportation Economics, Elsevier, vol. 39(1), pages 285-293.
    7. Martijn Brons & Panos Christidis, 2013. "External cost calculator for Marco Polo freight transport project proposals - Call 2013 updated version," JRC Research Reports JRC82783, Joint Research Centre.
    8. Wendler, E., 2007. "The scheduled waiting time on railway lines," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 148-158, February.
    9. Koppelman, Frank S. & Coldren, Gregory M. & Parker, Roger A., 2008. "Schedule delay impacts on air-travel itinerary demand," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 263-273, March.
    10. Douglas, George W & Miller, James C, III, 1974. "Quality Competition, Industry Equilibrium, and Efficiency in the Price-Constrained Airline Market," American Economic Review, American Economic Association, vol. 64(4), pages 657-669, September.
    11. repec:ipt:iptwpa:jrc81002 is not listed on IDEAS
    12. Abril, M. & Barber, F. & Ingolotti, L. & Salido, M.A. & Tormos, P. & Lova, A., 2008. "An assessment of railway capacity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 774-806, September.
    13. Françoise Nemry & Hande Demirel, 2012. "Impacts of Climate Change on transport: a focus on road and rail transport infrastructures," JRC Research Reports JRC72217, Joint Research Centre.
    14. Shi, Feng & Zhou, Zhao & Yao, Jia & Huang, Helai, 2012. "Incorporating transfer reliability into equilibrium analysis of railway passenger flow," European Journal of Operational Research, Elsevier, vol. 220(2), pages 378-385.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaromír Široký & Petr Nachtigall & Erik Tischer & Jozef Gašparík, 2021. "Simulation of Railway Lines with a Simplified Interlocking System," Sustainability, MDPI, vol. 13(3), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanović, Predrag & Pavlović, Norbert & Belošević, Ivan & Milinković, Sanjin, 2020. "Graph coloring-based approach for railway station design analysis and capacity determination," European Journal of Operational Research, Elsevier, vol. 287(1), pages 348-360.
    2. Leachman, Robert C. & Jula, Payman, 2012. "Estimating flow times for containerized imports from Asia to the United States through the Western rail network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 296-309.
    3. Li, Feng & Gao, Ziyou & Wang, David Z.W. & Liu, Ronghui & Tang, Tao & Wu, Jianjun & Yang, Lixing, 2017. "A subjective capacity evaluation model for single-track railway system with δ-balanced traffic and λ-tolerance level," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 43-66.
    4. Masoud Yaghini & Mohammadreza Sarmadi & Nariman Nikoo & Mohsen Momeni, 2014. "Capacity Consumption Analysis Using Heuristic Solution Method for Under Construction Railway Routes," Networks and Spatial Economics, Springer, vol. 14(3), pages 317-333, December.
    5. Burdett, RL, 2016. "Optimisation models for expanding a railway's theoretical capacity," European Journal of Operational Research, Elsevier, vol. 251(3), pages 783-797.
    6. Vautard, Félix & Liu, Chengxi & Fröidh, Oskar & Byström, Camilla, 2021. "Estimation of interregional rail passengers’ valuations for their desired departure times," Transport Policy, Elsevier, vol. 103(C), pages 183-196.
    7. Dariusz Milewski, 2020. "Total Costs of Centralized and Decentralized Inventory Strategies—Including External Costs," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    8. Florian Hofbauer & Lisa-Maria Putz, 2020. "External Costs in Inland Waterway Transport: An Analysis of External Cost Categories and Calculation Methods," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    9. Bugalia, Nikhil & Maemura, Yu & Ozawa, Kazumasa, 2021. "Demand risk management of private High-Speed Rail operators: A review of experiences in Japan and Taiwan," Transport Policy, Elsevier, vol. 113(C), pages 67-76.
    10. Line Blander Reinhardt & David Pisinger & Richard Lusby, 2018. "Railway capacity and expansion analysis using time discretized paths," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 712-739, December.
    11. Miguel Ángel López-Navarro, 2014. "Environmental Factors and Intermodal Freight Transportation: Analysis of the Decision Bases in the Case of Spanish Motorways of the Sea," Sustainability, MDPI, vol. 6(3), pages 1-23, March.
    12. Dariusz Bernacki & Christian Lis, 2021. "Exploring the Sustainable Effects of Urban-Port Road System Reconstruction," Energies, MDPI, vol. 14(20), pages 1-23, October.
    13. Ortega Riejos, Francisco A. & Barrena, Eva & Canca Ortiz, J. David & Laporte, Gilbert, 2016. "Analyzing the theoretical capacity of railway networks with a radial-backbone topology," Transportation Research Part A: Policy and Practice, Elsevier, vol. 84(C), pages 83-92.
    14. Lurkin, Virginie & Garrow, Laurie A. & Higgins, Matthew J. & Newman, Jeffrey P. & Schyns, Michael, 2017. "Accounting for price endogeneity in airline itinerary choice models: An application to Continental U.S. markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 228-246.
    15. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    16. Cho, Woohyun & Windle, Robert J. & Dresner, Martin E., 2017. "The impact of operational exposure and value-of-time on customer choice: Evidence from the airline industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 455-471.
    17. Martin Gaynor, "undated". "What Do We Know About Competition and Quality in Health Care Markets?," GSIA Working Papers 2006-E62, Carnegie Mellon University, Tepper School of Business.
    18. Richard G. Frank & David S. Salkever, 1988. "Altruism, Rivalry and Crowding-Out in the Nonprofit Firm's Supply of Charity Services: The Case of Hospitals," NBER Working Papers 2753, National Bureau of Economic Research, Inc.
    19. Behiri, Walid & Belmokhtar-Berraf, Sana & Chu, Chengbin, 2018. "Urban freight transport using passenger rail network: Scientific issues and quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 227-245.
    20. Jiang, Changmin & Zhang, Anming, 2015. "Airport congestion pricing and terminal investment: Effects of terminal congestion, passenger types, and concessionsAuthor-Name: Wan, Yulai," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 91-113.

    More about this item

    Keywords

    railway; transport policy; capacity constraints; punctuality; accessibility; synthetic and analytic methods; modelling;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipt:iptwpa:jrc100509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publication Officer (email available below). General contact details of provider: https://edirc.repec.org/data/ipjrces.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.