IDEAS home Printed from https://ideas.repec.org/p/imf/imfsdn/2024-001.html
   My bibliography  Save this paper

Gen-AI: Artificial Intelligence and the Future of Work

Author

Listed:
  • Mauro Cazzaniga
  • Ms. Florence Jaumotte
  • Longji Li
  • Mr. Giovanni Melina
  • Augustus J Panton
  • Carlo Pizzinelli
  • Emma J Rockall
  • Ms. Marina Mendes Tavares

Abstract

Artificial Intelligence (AI) has the potential to reshape the global economy, especially in the realm of labor markets. Advanced economies will experience the benefits and pitfalls of AI sooner than emerging market and developing economies, largely due to their employment structure focused on cognitive-intensive roles. There are some consistent patterns concerning AI exposure, with women and college-educated individuals more exposed but also better poised to reap AI benefits, and older workers potentially less able to adapt to the new technology. Labor income inequality may increase if the complementarity between AI and high-income workers is strong, while capital returns will increase wealth inequality. However, if productivity gains are sufficiently large, income levels could surge for most workers. In this evolving landscape, advanced economies and more developed emerging markets need to focus on upgrading regulatory frameworks and supporting labor reallocation, while safeguarding those adversely affected. Emerging market and developing economies should prioritize developing digital infrastructure and digital skills

Suggested Citation

  • Mauro Cazzaniga & Ms. Florence Jaumotte & Longji Li & Mr. Giovanni Melina & Augustus J Panton & Carlo Pizzinelli & Emma J Rockall & Ms. Marina Mendes Tavares, 2024. "Gen-AI: Artificial Intelligence and the Future of Work," IMF Staff Discussion Notes 2024/001, International Monetary Fund.
  • Handle: RePEc:imf:imfsdn:2024/001
    as

    Download full text from publisher

    File URL: http://www.imf.org/external/pubs/cat/longres.aspx?sk=542379
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aldasoro, Iñaki & Armantier, Olivier & Doerr, Sebastian & Gambacorta, Leonardo & Oliviero, Tommaso, 2024. "The gen AI gender gap," Economics Letters, Elsevier, vol. 241(C).
    2. Raphael Auer & David Köpfer & Josef Sveda, 2024. "The rise of generative AI: modelling exposure, substitution and inequality effects on the US labour market," BIS Working Papers 1207, Bank for International Settlements.
    3. Antonio Dalla Zuanna & Davide Dottori & Elena Gentili & Salvatore Lattanzio, 2024. "An assessment of occupational exposure to artificial intelligence in Italy," Questioni di Economia e Finanza (Occasional Papers) 878, Bank of Italy, Economic Research and International Relations Area.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imf:imfsdn:2024/001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Akshay Modi (email available below). General contact details of provider: https://edirc.repec.org/data/imfffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.