IDEAS home Printed from https://ideas.repec.org/p/ime/imedps/12-e-14.html
   My bibliography  Save this paper

A Framework for Extracting the Probability of Default from Stock Option Prices

Author

Listed:
  • Azusa Takeyama

    (Deputy Director and Economist, Institute for Monetary and Economic Studies, Bank of Japan (E-mail: azusa.takeyama@boj.or.jp))

  • Nick Constantinou

    (Lectuer, Essex Business School, University of Essex (E-mail: nconst@essex.ac.uk))

  • Dmitri Vinogradov

    (Lectuer, Essex Business School, University of Essex (E-mail:dvinog@essex.ac.uk))

Abstract

This paper develops a framework to estimate the probability of default (PD) implied in listed stock options. The underlying option pricing model measures PD as the intensity of a jump diffusion process, in which the underlying stock price jumps to zero at default. We adopt a two-stage calibration algorithm to obtain the precise estimator of PD. In the calibration procedure, we improve the fitness of the option pricing model via the implementation of the time inhomogeneous term structure model in the option pricing model. Since the term structure model perfectly fits the actual term structure, we resolve the estimation bias caused by the poor fitness of the time homogeneous term structure model. It is demonstrated that the PD estimator from listed stock options can provide meaningful insights on the pricing of credit derivatives like credit default swap.

Suggested Citation

  • Azusa Takeyama & Nick Constantinou & Dmitri Vinogradov, 2012. "A Framework for Extracting the Probability of Default from Stock Option Prices," IMES Discussion Paper Series 12-E-14, Institute for Monetary and Economic Studies, Bank of Japan.
  • Handle: RePEc:ime:imedps:12-e-14
    as

    Download full text from publisher

    File URL: http://www.imes.boj.or.jp/research/papers/english/12-E-14.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vadim Linetsky, 2006. "Pricing Equity Derivatives Subject To Bankruptcy," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 255-282, April.
    2. Bjerksund, Petter & Stensland, Gunnar, 1993. "Closed-form approximation of American options," Scandinavian Journal of Management, Elsevier, vol. 9(Supplemen), pages 87-99.
    3. Peter Carr & Liuren Wu, 2010. "Stock Options and Credit Default Swaps: A Joint Framework for Valuation and Estimation," Journal of Financial Econometrics, Oxford University Press, vol. 8(4), pages 409-449, Fall.
    4. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    5. Tabak, Benjamin M. & Luduvice, André Victor D. & Cajueiro, Daniel O., 2011. "Modeling default probabilities: The case of Brazil," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(4), pages 513-534, October.
    6. Kyriacos Kyriacou & Jakob B. Madsen & Bryan Mase, 2006. "Does inflation exaggerate the equity premium?," Journal of Economic Studies, Emerald Group Publishing, vol. 33(5), pages 344-356, November.
    7. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    8. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    9. Qi, Min & Zhao, Xinlei, 2011. "Comparison of modeling methods for Loss Given Default," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2842-2855, November.
    10. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    11. Clare, Andrew D, 1995. "Using the Arbitrage Pricing Theory to Calculate the Probability of Financial Institution Failure: A Note," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 27(3), pages 920-926, August.
    12. Das, Sanjiv R. & Hanouna, Paul, 2009. "Implied recovery," Journal of Economic Dynamics and Control, Elsevier, vol. 33(11), pages 1837-1857, November.
    13. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    14. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    15. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    16. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    17. Edward I. Altman & Brooks Brady & Andrea Resti & Andrea Sironi, 2005. "The Link between Default and Recovery Rates: Theory, Empirical Evidence, and Implications," The Journal of Business, University of Chicago Press, vol. 78(6), pages 2203-2228, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea De Martino & Edward Manuel Ruiz Crosby & Roberto Stagni, 2017. "A unified framework for pricing credit and equity derivatives," Working Papers 116, Peruvian Economic Association.
    2. Azusa Takeyama & Nick Constantinou & Dmitri Vinogradov, 2012. "Credit Risk Contagion and the Global Financial Crisis," IMES Discussion Paper Series 12-E-15, Institute for Monetary and Economic Studies, Bank of Japan.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    2. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    3. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    4. Beliaeva, Natalia & Nawalkha, Sanjay, 2012. "Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 151-163.
    5. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    6. Jonathan A. Batten & Karren Lee-Hwei Khaw & Martin R. Young, 2014. "Convertible Bond Pricing Models," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 775-803, December.
    7. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, January.
    8. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, July-Dece.
    9. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    10. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    11. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005.
    12. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    13. Zhou, Chunsheng, 2001. "The term structure of credit spreads with jump risk," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 2015-2040, November.
    14. Choi, Jaehyung, 2012. "Spontaneous symmetry breaking of arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3206-3218.
    15. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    16. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    17. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    18. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    19. repec:uts:finphd:40 is not listed on IDEAS
    20. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    21. Geman, Hélyette, 2005. "From measure changes to time changes in asset pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2701-2722, November.

    More about this item

    Keywords

    probability of default (PD); option pricing under credit risk; perturbation method;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ime:imedps:12-e-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kinken (email available below). General contact details of provider: https://edirc.repec.org/data/imegvjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.