IDEAS home Printed from https://ideas.repec.org/p/iim/iimawp/wp01953.html
   My bibliography  Save this paper

Unified Concept of Bottleneck

Author

Listed:
  • Chatterjee A K
  • Mukherjee, Saral

Abstract

The term `bottleneck` has been extensively used in operations management literature. Management paradigms like the Theory of Constraints focus on the identification and exploitation of bottlenecks. Yet, we show that the term has not been rigorously defined. We provide a classification of bottleneck definitions available in literature and discuss several myths associated with the concept of bottleneck. The apparent diversity of definitions raises the question whether it is possible to have a single bottleneck definition which has as much applicability in high variety job shops as in mass production environments. The key to the formulation of an unified concept of bottleneck lies in relating the concept of bottleneck to the concept of shadow price of resources. We propose an universally applicable bottleneck definition based on the concept of average shadow price. We discuss the procedure for determination of bottleneck values for diverse production environments. The Law of Diminishing Returns is shown to be a sufficient but not necessary condition for the equivalence of the average and the marginal shadow price. The equivalence of these two prices is proved for several environments. Bottleneck identification is the first step in resource acquisition decisions faced by managers. The definition of bottleneck presented in the paper has the potential to not only reduce ambiguity regarding the meaning of the term but also open a new window to the formulation and analysis of a rich set of problems faced by managers.

Suggested Citation

  • Chatterjee A K & Mukherjee, Saral, 2006. "Unified Concept of Bottleneck," IIMA Working Papers WP2006-05-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
  • Handle: RePEc:iim:iimawp:wp01953
    as

    Download full text from publisher

    File URL: https://www.iima.ac.in/sites/default/files/rnpfiles/2006-05-01saralm.pdf
    File Function: English Version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johnny C. Ho & Johnny S. Wong, 1995. "Makespan minimization for m parallel identical processors," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(6), pages 935-948, September.
    2. Drobouchevitch, I. G. & Strusevich, V. A., 2000. "Heuristics for the two-stage job shop scheduling problem with a bottleneck machine," European Journal of Operational Research, Elsevier, vol. 123(2), pages 229-240, June.
    3. Marshall L. Fisher, 1973. "Optimal Solution of Scheduling Problems Using Lagrange Multipliers: Part I," Operations Research, INFORMS, vol. 21(5), pages 1114-1127, October.
    4. J.M. van den Akker & C.A.J. Hurkens & M.W.P. Savelsbergh, 2000. "Time-Indexed Formulations for Machine Scheduling Problems: Column Generation," INFORMS Journal on Computing, INFORMS, vol. 12(2), pages 111-124, May.
    5. A. M. Geoffrion & R. Nauss, 1977. "Exceptional Paper--Parametric and Postoptimality Analysis in Integer Linear Programming," Management Science, INFORMS, vol. 23(5), pages 453-466, January.
    6. Crema, Alejandro, 1995. "Average shadow price in a mixed integer linear programming problem," European Journal of Operational Research, Elsevier, vol. 85(3), pages 625-635, September.
    7. Crema, Alejandro, 1999. "An algorithm to perform a complete right-hand-side parametrical analysis for a 0-1-integer linear programming problem," European Journal of Operational Research, Elsevier, vol. 114(3), pages 569-579, May.
    8. Koopmans, Tjalling C, 1977. "Concepts of Optimality and Their Uses," American Economic Review, American Economic Association, vol. 67(3), pages 261-274, June.
    9. Carlier, Jacques & Rebai, Ismail, 1996. "Two branch and bound algorithms for the permutation flow shop problem," European Journal of Operational Research, Elsevier, vol. 90(2), pages 238-251, April.
    10. Abraham Grosfeld-Nir & Yigal Gerchak, 2002. "Multistage Production to Order with Rework Capability," Management Science, INFORMS, vol. 48(5), pages 652-664, May.
    11. Ahn, Taeho & Erenguc, S. Selcuk, 1998. "The resource constrained project scheduling problem with multiple crashable modes: A heuristic procedure," European Journal of Operational Research, Elsevier, vol. 107(2), pages 250-259, June.
    12. Carlier, Jacques, 1987. "Scheduling jobs with release dates and tails on identical machines to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 29(3), pages 298-306, June.
    13. B. J. Lageweg & J. K. Lenstra & A. H. G. Rinnooy Kan, 1977. "Job-Shop Scheduling by Implicit Enumeration," Management Science, INFORMS, vol. 24(4), pages 441-450, December.
    14. Peter J. Billington & John O. McClain & L. Joseph Thomas, 1986. "Heuristics for Multilevel Lot-Sizing with a Bottleneck," Management Science, INFORMS, vol. 32(8), pages 989-1006, August.
    15. SOUSA, Jorge P. & WOLSEY, Laurence A., 1992. "A time indexed formulation of non-preemptive single machine scheduling problems," LIDAM Reprints CORE 984, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Böttcher, Jan & Drexl, A. & Kolisch, R. & Salewski, F., 1999. "Project scheduling under partially renewable resource constraints," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 345, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    17. Grosfeld-Nir, Abraham, 2005. "A two-bottleneck system with binomial yields and rigid demand," European Journal of Operational Research, Elsevier, vol. 165(1), pages 231-250, August.
    18. Andreas Drexl & Alf Kimms, 2001. "Sequencing JIT Mixed-Model Assembly Lines Under Station-Load and Part-Usage Constraints," Management Science, INFORMS, vol. 47(3), pages 480-491, March.
    19. Jan Böttcher & Andreas Drexl & Rainer Kolisch & Frank Salewski, 1999. "Project Scheduling Under Partially Renewable Resource Constraints," Management Science, INFORMS, vol. 45(4), pages 543-559, April.
    20. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    21. Mukherjee, Saral & Chatterjee, A.K., 2006. "The average shadow price for MILPs with integral resource availability and its relationship to the marginal unit shadow price," European Journal of Operational Research, Elsevier, vol. 169(1), pages 53-64, February.
    22. Kim, Sehun & Cho, Seong-cheol, 1988. "A shadow price in integer programming for management decision," European Journal of Operational Research, Elsevier, vol. 37(3), pages 328-335, December.
    23. Steven T. Hackman & Robert C. Leachman, 1989. "A General Framework for Modeling Production," Management Science, INFORMS, vol. 35(4), pages 478-495, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandro Crema, 2018. "Generalized average shadow prices and bottlenecks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(1), pages 99-124, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mukherjee, Saral & Chatterjee, A.K., 2006. "The average shadow price for MILPs with integral resource availability and its relationship to the marginal unit shadow price," European Journal of Operational Research, Elsevier, vol. 169(1), pages 53-64, February.
    2. Liao, Chao-ning & Önal, Hayri & Chen, Ming-Hsiang, 2009. "Average shadow price and equilibrium price: A case study of tradable pollution permit markets," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1207-1213, August.
    3. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    4. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    5. Giuseppe Lancia & Franca Rinaldi & Paolo Serafini, 2011. "A time-indexed LP-based approach for min-sum job-shop problems," Annals of Operations Research, Springer, vol. 186(1), pages 175-198, June.
    6. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    7. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    8. Ivens, Philip & Lambrecht, Marc, 1996. "Extending the shifting bottleneck procedure to real-life applications," European Journal of Operational Research, Elsevier, vol. 90(2), pages 252-268, April.
    9. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    10. Grosfeld-Nir, Abraham & Anily, Shoshana & Ben-Zvi, Tal, 2006. "Lot-sizing two-echelon assembly systems with random yields and rigid demand," European Journal of Operational Research, Elsevier, vol. 173(2), pages 600-616, September.
    11. Baptiste, Philippe & Sadykov, Ruslan, 2010. "Time-indexed formulations for scheduling chains on a single machine: An application to airborne radars," European Journal of Operational Research, Elsevier, vol. 203(2), pages 476-483, June.
    12. Drexl, Andreas & Nissen, Rudiger & Patterson, James H. & Salewski, Frank, 2000. "ProGen/[pi]x - An instance generator for resource-constrained project scheduling problems with partially renewable resources and further extensions," European Journal of Operational Research, Elsevier, vol. 125(1), pages 59-72, August.
    13. Crema, Alejandro, 2002. "An algorithm to perform a complete parametric analysis relative to the constraint matrix for a 0-1-integer linear program," European Journal of Operational Research, Elsevier, vol. 138(3), pages 484-494, May.
    14. Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre (Ed.), 2000. "Jahresbericht 1999," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 522, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    15. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    16. M Haouari & T Ladhari, 2007. "Minimizing maximum lateness in a flow shop subject to release dates," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 62-72, January.
    17. Kai Watermeyer & Jürgen Zimmermann, 2022. "A partition-based branch-and-bound algorithm for the project duration problem with partially renewable resources and general temporal constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 575-602, June.
    18. Colvin, Matthew & Maravelias, Christos T., 2011. "R&D pipeline management: Task interdependencies and risk management," European Journal of Operational Research, Elsevier, vol. 215(3), pages 616-628, December.
    19. Laureano Escudero & Javier Salmeron, 2005. "On a Fix-and-Relax Framework for a Class of Project Scheduling Problems," Annals of Operations Research, Springer, vol. 140(1), pages 163-188, November.
    20. Kai Watermeyer & Jürgen Zimmermann, 2020. "A branch-and-bound procedure for the resource-constrained project scheduling problem with partially renewable resources and general temporal constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 427-460, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iim:iimawp:wp01953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/eciimin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.