IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

R&D pipeline management: Task interdependencies and risk management

Listed author(s):
  • Colvin, Matthew
  • Maravelias, Christos T.
Registered author(s):

    Maintaining a rich research and development (R&D) pipeline is the key to remaining competitive in many industrial sectors. Due to its nature, R&D activities are subject to multiple sources of uncertainty, the modeling of which is compounded by the ability of the decision maker to alter the underlying process. In this paper, we present a multi-stage stochastic programming framework for R&D pipeline management, which demonstrates how essential considerations can be modeled in an efficient manner including: (i) the selection and scheduling of R&D tasks with general precedence constraints under pass/fail uncertainty, and (ii) resource planning decisions (expansion/contraction and outsourcing) for multiple resource types. Furthermore, we study interdependencies between tasks in terms of probability of success, resource usage and market impact. Finally, we explore risk management approaches, including novel formulations for value at risk and conditional value at risk.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 215 (2011)
    Issue (Month): 3 (December)
    Pages: 616-628

    in new window

    Handle: RePEc:eee:ejores:v:215:y:2011:i:3:p:616-628
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Ming Ding & Jehoshua Eliashberg, 2002. "Structuring the New Product Development Pipeline," Management Science, INFORMS, vol. 48(3), pages 343-363, March.
    2. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    3. Neumann, K. & Zimmermann, J., 2000. "Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints," European Journal of Operational Research, Elsevier, vol. 127(2), pages 425-443, December.
    4. Herroelen, Willy & Leus, Roel, 2005. "Project scheduling under uncertainty: Survey and research potentials," European Journal of Operational Research, Elsevier, vol. 165(2), pages 289-306, September.
    5. Böttcher, Jan & Drexl, A. & Kolisch, R. & Salewski, F., 1999. "Project scheduling under partially renewable resource constraints," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 345, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Benati, Stefano & Rizzi, Romeo, 2007. "A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem," European Journal of Operational Research, Elsevier, vol. 176(1), pages 423-434, January.
    7. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    8. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    9. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2005. "Justification and RCPSP: A technique that pays," European Journal of Operational Research, Elsevier, vol. 165(2), pages 375-386, September.
    10. Jan Böttcher & Andreas Drexl & Rainer Kolisch & Frank Salewski, 1999. "Project Scheduling Under Partially Renewable Resource Constraints," Management Science, INFORMS, vol. 45(4), pages 543-559, April.
    11. Bouleimen, K. & Lecocq, H., 2003. "A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version," European Journal of Operational Research, Elsevier, vol. 149(2), pages 268-281, September.
    12. Mika, Marek & Waligora, Grzegorz & Weglarz, Jan, 2005. "Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models," European Journal of Operational Research, Elsevier, vol. 164(3), pages 639-668, August.
    13. Joseph A. DiMasi & Henry G. Grabowski, 2007. "The cost of biopharmaceutical R&D: is biotech different?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 28(4-5), pages 469-479.
    14. Pilar Tormos & Antonio Lova, 2001. "A Competitive Heuristic Solution Technique for Resource-Constrained Project Scheduling," Annals of Operations Research, Springer, vol. 102(1), pages 65-81, February.
    15. Solak, Senay & Clarke, John-Paul B. & Johnson, Ellis L. & Barnes, Earl R., 2010. "Optimization of R&D project portfolios under endogenous uncertainty," European Journal of Operational Research, Elsevier, vol. 207(1), pages 420-433, November.
    16. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    17. Colvin, Matthew & Maravelias, Christos T., 2010. "Modeling methods and a branch and cut algorithm for pharmaceutical clinical trial planning using stochastic programming," European Journal of Operational Research, Elsevier, vol. 203(1), pages 205-215, May.
    18. Kolisch, Rainer & Hartmann, Sonke, 2006. "Experimental investigation of heuristics for resource-constrained project scheduling: An update," European Journal of Operational Research, Elsevier, vol. 174(1), pages 23-37, October.
    19. DiMasi, Joseph A. & Hansen, Ronald W. & Grabowski, Henry G., 2003. "The price of innovation: new estimates of drug development costs," Journal of Health Economics, Elsevier, vol. 22(2), pages 151-185, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:215:y:2011:i:3:p:616-628. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.