IDEAS home Printed from https://ideas.repec.org/p/ibr/dpaper/2005-12.html
   My bibliography  Save this paper

Duality and Derivative Pricing with Time-Changed Lévy Processes

Author

Listed:
  • José Fajardo

    (IBMEC Business School - Rio de Janeiro)

  • Ernesto Mordecki

    (Centro de Matemática, Facultad de Ciências, Universidad de la República, Uruguay)

Abstract

In this paper we study the pricing problem of derivatives written in terms of a two dimensional Time-changed Lévy processes. Then, we examine an existing relation between prices of put and call options, of both the European and the American type. This relation is called put-call duality. It includes as a particular case, the relation known as put-call symmetry. Necessary and sufficient conditions for put-call symmetry to hold are shown, in terms of the triplet of local characteristic of the Time-changed Lévy process. In this way we extend the results obtained by Fajardo and Mordecki (2004a) and Fajardo and Mordecki (2004b) to the case of Time-changed Lévy processes.

Suggested Citation

  • José Fajardo & Ernesto Mordecki, 2005. "Duality and Derivative Pricing with Time-Changed Lévy Processes," IBMEC RJ Economics Discussion Papers 2005-12, Economics Research Group, IBMEC Business School - Rio de Janeiro.
  • Handle: RePEc:ibr:dpaper:2005-12
    as

    Download full text from publisher

    File URL: http://professores.ibmecrj.br/erg/dp/papers/dp200512.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fajardo, J. & Mordecki, E., 2003. "Put-Call Duality and Symmetry," Finance Lab Working Papers flwp_54, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    2. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    3. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    4. repec:bla:jfinan:v:59:y:2004:i:3:p:1405-1440 is not listed on IDEAS
    5. Schroder, Mark, 1999. "Changes of Numeraire for Pricing Futures, Forwards, and Options," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 1143-1163.
    6. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    9. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    10. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    11. José Fajardo & Ernesto Mordecki, 2006. "Pricing Derivatives On Two-Dimensional Lévy Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 185-197.
    12. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Fajardo & Ernesto Mordecki, 2006. "Skewness Premium with Lévy Processes," IBMEC RJ Economics Discussion Papers 2006-04, Economics Research Group, IBMEC Business School - Rio de Janeiro.
    2. Fajardo, José & Mordecki, Ernesto, 2010. "Market symmetry in time-changed Brownian models," Finance Research Letters, Elsevier, vol. 7(1), pages 53-59, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    2. Massoud Heidari & Liuren WU, 2002. "Are Interest Rate Derivatives Spanned by the Term Structure of Interest Rates?," Finance 0207013, University Library of Munich, Germany.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    5. Lindström, Erik & Ströjby, Jonas & Brodén, Mats & Wiktorsson, Magnus & Holst, Jan, 2008. "Sequential calibration of options," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2877-2891, February.
    6. Carverhill, Andrew & Luo, Dan, 2023. "A Bayesian analysis of time-varying jump risk in S&P 500 returns and options," Journal of Financial Markets, Elsevier, vol. 64(C).
    7. Peter Carr & Liuren Wu, 2004. "Variance Risk Premia," Finance 0409015, University Library of Munich, Germany.
    8. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
    9. Yanhui Mi, 2016. "A modified stochastic volatility model based on Gamma Ornstein–Uhlenbeck process and option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-16, June.
    10. Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.
    11. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
    12. Pawel J. Szerszen, 2009. "Bayesian analysis of stochastic volatility models with Lévy jumps: application to risk analysis," Finance and Economics Discussion Series 2009-40, Board of Governors of the Federal Reserve System (U.S.).
    13. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2023. "Shot-noise cojumps: exact simulation and option pricing," LSE Research Online Documents on Economics 111537, London School of Economics and Political Science, LSE Library.
    14. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    15. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, December.
    16. Winston Buckley & Sandun Perera, 2019. "Optimal demand in a mispriced asymmetric Carr–Geman–Madan–Yor (CGMY) economy," Annals of Finance, Springer, vol. 15(3), pages 337-368, September.
    17. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    18. Fajardo, J. & Mordeckiy, E., 2003. "Pricing Derivatives on Two Lévy-driven Stocks," Finance Lab Working Papers flwp_56, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    19. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    20. Fajardo, J. & Mordeckiz, E., 2004. "Duality and Derivative Pricing with Lévy Processes," Finance Lab Working Papers flwp_71, Finance Lab, Insper Instituto de Ensino e Pesquisa.

    More about this item

    Keywords

    Lévy processes; Time Change; Symmetry;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibr:dpaper:2005-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Márcio Laurini (email available below). General contact details of provider: https://edirc.repec.org/data/ibmrjbr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.