IDEAS home Printed from https://ideas.repec.org/a/oup/rfinst/v12y1999i5p1143-63.html
   My bibliography  Save this article

Changes of Numeraire for Pricing Futures, Forwards, and Options

Author

Listed:
  • Schroder, Mark

Abstract

A change of numeraire argument is used to derive a general option parity, or equivalence, result relating American call and put prices, and to obtain new expressions for futures and forward prices. The general parity result unifies and extends a number of existing results. The new futures and forward pricing formulas are often simpler to compute in multifactor models than existing alternatives. We also extend previous work by deriving a general formula relating exchange options to ordinary call options. A number of applications to diffusion models, including stochastic volatility, stochastic interest rate, and stochastic dividend rate models, and jump-diffusion models are examined. Article published by Oxford University Press on behalf of the Society for Financial Studies in its journal, The Review of Financial Studies.

Suggested Citation

  • Schroder, Mark, 1999. "Changes of Numeraire for Pricing Futures, Forwards, and Options," Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 1143-1163.
  • Handle: RePEc:oup:rfinst:v:12:y:1999:i:5:p:1143-63
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:wsi:ijtafx:v:09:y:2006:i:06:n:s0219024906003809 is not listed on IDEAS
    2. Tehranchi, Michael R., 2009. "Symmetric martingales and symmetric smiles," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3785-3797, October.
    3. Fajardo, J. & Mordeckiy, E., 2003. "Pricing Derivatives on Two Lévy-driven Stocks," Finance Lab Working Papers flwp_56, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    4. Jean-Paul Laurent & Philippe Amzelek & Joe Bonnaud, 2014. "An overview of the valuation of collateralized derivative contracts," Review of Derivatives Research, Springer, vol. 17(3), pages 261-286, October.
    5. Abraham Lioui, 2005. "Stochastic dividend yields and derivatives pricing in complete markets," Review of Derivatives Research, Springer, vol. 8(3), pages 151-175, December.
    6. Fajardo, J. & Mordeckiz, E., 2004. "Duality and Derivative Pricing with Lévy Processes," Finance Lab Working Papers flwp_71, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    7. JosE Fajardo & Ernesto Mordecki, 2006. "Symmetry and duality in Levy markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 219-227.
    8. Medvedev, Alexey & Scaillet, Olivier, 2010. "Pricing American options under stochastic volatility and stochastic interest rates," Journal of Financial Economics, Elsevier, vol. 98(1), pages 145-159, October.
    9. repec:kap:annfin:v:14:y:2018:i:2:d:10.1007_s10436-017-0315-y is not listed on IDEAS
    10. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    11. Detemple, Jérôme & Emmerling, Thomas, 2009. "American chooser options," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 128-153, January.
    12. José Fajardo & Ernesto Mordecki, 2014. "Skewness premium with Lévy processes," Quantitative Finance, Taylor & Francis Journals, vol. 14(9), pages 1619-1626, September.
    13. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    14. José Fajardo & Ernesto Mordecki, 2005. "Duality and Derivative Pricing with Time-Changed Lévy Processes," IBMEC RJ Economics Discussion Papers 2005-12, Economics Research Group, IBMEC Business School - Rio de Janeiro.
    15. Ruas, João Pedro & Dias, José Carlos & Vidal Nunes, João Pedro, 2013. "Pricing and static hedging of American-style options under the jump to default extended CEV model," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4059-4072.
    16. Anna Battauz & Marzia De Donno & Alessandro Sbuelz, 2015. "Real Options and American Derivatives: The Double Continuation Region," Management Science, INFORMS, vol. 61(5), pages 1094-1107, May.
    17. Cai, Ning & Sun, Lihua, 2014. "Valuation of stock loans with jump risk," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 213-241.
    18. Marzia De Donno & Zbigniew Palmowski & Joanna Tumilewicz, 2017. "Double continuation regions for American and Swing options with negative discount rate in L\'evy models," Papers 1801.00266, arXiv.org.
    19. José Carlos Dias & João Pedro Vidal Nunes & João Pedro Ruas, 2015. "Pricing and static hedging of European-style double barrier options under the jump to default extended CEV model," Quantitative Finance, Taylor & Francis Journals, vol. 15(12), pages 1995-2010, December.
    20. Jérôme Detemple & Weidong Tian, 2002. "The Valuation of American Options for a Class of Diffusion Processes," Management Science, INFORMS, vol. 48(7), pages 917-937, July.
    21. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    22. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    23. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    24. Lin, Yueh-Neng, 2013. "VIX option pricing and CBOE VIX Term Structure: A new methodology for volatility derivatives valuation," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4432-4446.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:rfinst:v:12:y:1999:i:5:p:1143-63. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sfsssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.