IDEAS home Printed from https://ideas.repec.org/p/iab/iabdpa/201402.html
   My bibliography  Save this paper

Beat the heap - an imputation strategy for valid inferences from rounded income data

Author

Listed:
  • Drechsler, Jörg

    () (Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany])

  • Kiesl, Hans

Abstract

"Questions on income in surveys are prone to two sources of errors that can cause bias if not addressed adequately at the analysis stage. On the one hand, income is considered sensitive information and response rates on income questions generally tend to be lower than response rates for other non-sensitive questions. On the other hand respondents usually don't remember their exact income and thus tend to provide a rounded estimate. The negative effects of item nonresponse are well studied and most statistical agencies have developed sophisticated imputation methods to correct for this potential source of bias. However, to our knowledge the effects of rounding are hardly ever considered in practice, despite the fact that several studies have found strong evidence that most of the respondents round their reported income values. In this paper we illustrate the substantial impact that rounding can have on important measures derived from the income variable such as the poverty rate. To obtain unbiased estimates, we propose a two stage imputation strategy that estimates the posterior probability for rounding given the observed income values at the first stage and re-imputes the observed income values given the rounding probabilities at the second stage. A simulation study shows that the proposed imputation model can help overcome the possible negative effects of rounding. We also present results based on the household income variable from the German panel study 'Labour Market and Social Security.'" (Author's abstract, IAB-Doku) ((en))

Suggested Citation

  • Drechsler, Jörg & Kiesl, Hans, 2014. "Beat the heap - an imputation strategy for valid inferences from rounded income data," IAB Discussion Paper 201402, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
  • Handle: RePEc:iab:iabdpa:201402
    as

    Download full text from publisher

    File URL: http://doku.iab.de/discussionpapers/2014/dp0214.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Christopher R. Bollinger & Barry T. Hirsch, 2013. "Is Earnings Nonresponse Ignorable?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 407-416, May.
    2. Schenker, Nathaniel & Raghunathan, Trivellore E. & Chiu, Pei-Lu & Makuc, Diane M. & Zhang, Guangyu & Cohen, Alan J., 2006. "Multiple Imputation of Missing Income Data in the National Health Interview Survey," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 924-933, September.
    3. F. Clementi & M. Gallegati, 2005. "Pareto's Law of Income Distribution: Evidence for Germany, the United Kingdom, and the United States," Papers physics/0504217, arXiv.org, revised Mar 2006.
    4. Pauser, Johannes, 2013. "Capital mobility, imperfect labour markets, and the provision of public goods," IAB Discussion Paper 201309, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    5. Manski, Charles F. & Molinari, Francesca, 2010. "Rounding Probabilistic Expectations in Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 219-231.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Non Response; Einkommenshöhe; Imputationsverfahren; Simulation; Methodenliteratur; Befragung; Antwortverhalten; Datenqualität; IAB-Haushaltspanel;

    JEL classification:

    • C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods
    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iab:iabdpa:201402. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (IAB, Geschäftsbereich Dokumentation und Bibliothek). General contact details of provider: http://edirc.repec.org/data/iabbbde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.