IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v47y2015i33p3540-3558.html

Constructing a new leading indicator for unemployment from a survey among German employment agencies

Author

Listed:
  • Christian Hutter
  • Enzo Weber

Abstract

The article investigates the predictive power of a new survey implemented by the Federal Employment Agency (FEA) for forecasting German unemployment in the short run. Every month, the CEOs of the FEA's regional agencies are asked about their expectations of future labour market developments. We generate an aggregate unemployment leading indicator that exploits serial correlation in response behaviour through identifying and adjusting temporarily unreliable predictions. We use out-of-sample tests suitable in nested model environments to compare forecasting performance of models including the new indicator to that of purely autoregressive benchmarks. For all investigated forecast horizons (1, 2, 3 and 6 months), test results show that models enhanced by the new leading indicator significantly outperform their benchmark counterparts. To compare our indicator to potential competitors, we employ the model confidence set. Results reveal that models including the new indicator perform very well at the 10% level.

Suggested Citation

  • Christian Hutter & Enzo Weber, 2015. "Constructing a new leading indicator for unemployment from a survey among German employment agencies," Applied Economics, Taylor & Francis Journals, vol. 47(33), pages 3540-3558, July.
  • Handle: RePEc:taf:applec:v:47:y:2015:i:33:p:3540-3558
    DOI: 10.1080/00036846.2015.1018672
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2015.1018672
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2015.1018672?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claveria, Oscar, 2019. "Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 53(1), pages 1-3.
    2. Robert Lehmann & Antje Weyh, 2016. "Forecasting Employment in Europe: Are Survey Results Helpful?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 81-117, September.
    3. Hutter, Christian, 2020. "A new indicator for nowcasting employment subject to social security contributions in Germany," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 54(1), pages 1-4.
    4. Sorić, Petar & Lolić, Ivana & Claveria, Oscar & Monte, Enric & Torra, Salvador, 2019. "Unemployment expectations: A socio-demographic analysis of the effect of news," Labour Economics, Elsevier, vol. 60(C), pages 64-74.
    5. Klaus Wohlrabe, 2018. "Das neue ifo Beschäftigungsbarometer," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 71(09), pages 34-36, May.
    6. Oscar Claveria, 2019. "Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 53(1), pages 1-10, December.
    7. repec:iab:iabjlr:v:53:i:1:p:art.3 is not listed on IDEAS
    8. David G. Blanchflower & Alex Bryson, 2021. "The Economics of Walking About and Predicting Unemployment," NBER Working Papers 29172, National Bureau of Economic Research, Inc.
    9. Stefan Sauer & Klaus Wohlrabe, 2020. "ifo Handbuch der Konjunkturumfragen," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 88, July.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:47:y:2015:i:33:p:3540-3558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.