IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2014-016.html
   My bibliography  Save this paper

An Application of Principal Component Analysis on Multivariate Time-Stationary Spatio-Temporal Data

Author

Listed:
  • Stephan Stahlschmidt
  • Wolfgang Karl Härdle
  • Helmut Thome

Abstract

Principal component analysis denotes a popular algorithmic technique to dimension reduction and factor extraction. Spatial variants have been proposed to account for the particularities of spatial data, namely spatial heterogeneity and spatial autocorrelation, and we present a novel approach which transfers principal component analysis into the spatio-temporal realm. Our approach, named stPCA, allows for dimension reduction in the attribute space while striving to preserve much of the data's variance and maintaining the data's original structure in the spatio-temporal domain. Additionally to spatial autocorrelation stPCA exploits any serial correlation present in the data and consequently takes advantage of all particular features of spatial-temporal data. A simulation study underlines the superior performance of stPCA if compared to the original PCA or its spatial variants and an application on indicators of economic deprivation and urbanism demonstrates its suitability for practical use.

Suggested Citation

  • Stephan Stahlschmidt & Wolfgang Karl Härdle & Helmut Thome, 2014. "An Application of Principal Component Analysis on Multivariate Time-Stationary Spatio-Temporal Data," SFB 649 Discussion Papers SFB649DP2014-016, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2014-016
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2014-016.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pieter Kroonenberg & Jan Leeuw, 1980. "Principal component analysis of three-mode data by means of alternating least squares algorithms," Psychometrika, Springer;The Psychometric Society, vol. 45(1), pages 69-97, March.
    2. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    3. Hogan J.W. & Tchernis R., 2004. "Bayesian Factor Analysis for Spatially Correlated Data, With Application to Summarizing Area-Level Material Deprivation From Census Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 314-324, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    PCA; spatio-temporal analysis; dimension reduction; factor extraction; economic deprivation; urbanism;

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2014-016. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: http://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.