IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2010-041.html
   My bibliography  Save this paper

Prognose mit nichtparametrischen Verfahren

Author

Listed:
  • Wolfgang Karl Härdle
  • Rainer Schulz
  • Weining Wang

Abstract

Statistische Prognosen basieren auf der Annahme, dass ein funktionaler Zusammenhang zwischen der zu prognostizierenden Variable y und anderen j-dimensional beobachtbaren Variablen x = (x1,...xl) besteht. Kann der funktionale Zusammenhang geschätzt werden, so kann im Prinzip für jedes x der zugehörige Wert y prognostiziert werden. Bei den meisten Anwendungen wird angenommen, dass der funktionale Zusammenhang einem niedrigdimensionalen parametrischen Modell entspricht oder durch dieses zumindest gut wiedergegeben wird. Ein Beispiel im univariaten Fall ist das lineare Modell y = b0 + b1x. Sind die beiden unbekannten Parameter b0 und b1 mithilfe historischer Daten geschätzt, so lässt sich für jedes gegebene x sofort der zugehörige Wert y prognostizieren. Allerdings besteht hierbei die Gefahr, dass der wirkliche funktionale Zusammenhang nicht dem gewählten Modell entspricht. Dies kann infolge zu schlechten Prognosen führen. Nichtparametrische Verfahren gehen ebenfalls von einem funktionalen Zusammenhang aus, geben aber kein festes parametrisches Modell vor und zwängen die Daten damit in kein Prokrustes Bett. Sie sind deshalb hervorragend geeignet, um 1) Daten explorativ darzustellen, 2) parametrische Modelle zu überprüfen und 3) selbst als Schätzer für den funktionalen Zusammenhang zu dienen (Cleveland [2], Cleveland und Devlin [3]). Nichtparametrische Verfahren können daher problemlos auch zur Prognose eingesetzt werden. Dieses Kapitel ist wie folgt strukturiert. Abschnitt 9.2 stellt nichtparametrische Verfahren vor und erläutert deren grundsätzliche Struktur. Der Schwerpunkt liegt auf dem univariaten Regressionsmodell und auf der Motivation der vorgestellten Verfahren. Abschnitt 9.3 präsentiert eine praktische Anwendung für eine Zeitreihe von Wechselkursvolatilitäten. Es werden Prognosen mit nichtparametrischen Verfahren berechnet und deren Güte mit den Prognosen eines AR(1)-Zeitreihenmodells verglichen, vgl. auch Kapitel 14 dieses Buches. Es zeigt sich für die gewählte Anwendung, dass das parametrische Modell die Daten sehr gut erfasst. Das nichtparametrische Modell liefert in dieser Anwendung keine bessere Prognosegüte. Zugleich veranschaulicht die Anwendung, wie nichtparametrische Verfahren für die Modelvalidierung eingesetzt werden können. Und natürlich zeigt es auch, wie solche Verfahren für Prognosen eingesetzt werden können. Abschnitt 9.4 präsentiert die Literatur, die für weitere Lektüre herangezogen werden kann. Alle praktischen Beispiele im Text, welche mit dem Symbol versehen sind, lassen sich von der Addresse www.quantlet.de herunterladen.

Suggested Citation

  • Wolfgang Karl Härdle & Rainer Schulz & Weining Wang, 2010. "Prognose mit nichtparametrischen Verfahren," SFB 649 Discussion Papers SFB649DP2010-041, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2010-041
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2010-041.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wolfgang Härdle & Helmut Lütkepohl & Rong Chen, 1997. "A Review of Nonparametric Time Series Analysis," International Statistical Review, International Statistical Institute, vol. 65(1), pages 49-72, April.
    2. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    3. Diebold, Francis X. & Nason, James A., 1990. "Nonparametric exchange rate prediction?," Journal of International Economics, Elsevier, vol. 28(3-4), pages 315-332, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicole Wiebach & Lutz Hildebrandt, 2010. "Context Effects as Customer Reaction on Delisting of Brands," SFB 649 Discussion Papers SFB649DP2010-056, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. Agnieszka Janek & Tino Kluge & Rafal Weron & Uwe Wystup, 2010. "FX Smile in the Heston Model," HSC Research Reports HSC/10/02, Hugo Steinhaus Center, Wroclaw University of Technology.
    3. Nikolaus Hautsch & Peter Malec & Melanie Schienle, 2014. "Capturing the Zero: A New Class of Zero-Augmented Distributions and Multiplicative Error Processes," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 89-121.
    4. Basteck, Christian & Daniëls, Tijmen R., 2011. "Every symmetric 3×3 global game of strategic complementarities has noise-independent selection," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 749-754.
    5. Franziska Schulze, 2010. "Spatial Dependencies in German Matching Functions," SFB 649 Discussion Papers SFB649DP2010-054, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    6. Szymon Borak & Adam Misiorek & Rafał Weron, 2010. "Models for Heavy-tailed Asset Returns," SFB 649 Discussion Papers SFB649DP2010-049, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    7. Enno Mammen & Christoph Rothe & Melanie Schienle, 2010. "Nonparametric Regression with Nonparametrically Generated Covariates," SFB 649 Discussion Papers SFB649DP2010-059, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    8. Ralf Sabiwalsky, 2010. "Executive Compensation Regulation and the Dynamics of the Pay-Performance Sensitivity," SFB 649 Discussion Papers SFB649DP2010-051, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    9. Vladimir Panov, 2010. "Estimation of the signal subspace without estimation of the inverse covariance matrix," SFB 649 Discussion Papers SFB649DP2010-050, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    10. Maria Grith & Volker Krätschmer, 2010. "Parametric estimation of risk neutral density functions," SFB 649 Discussion Papers SFB649DP2010-045, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Härdle, Wolfgang Karl & Chen, Ying & Schulz, Rainer, 2004. "Prognose mit nichtparametrischen Verfahren," Papers 2004,07, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    2. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    3. repec:cup:cbooks:9780521779654 is not listed on IDEAS
    4. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    5. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    6. Marcos Álvarez-Díaz & Alberto Álvarez, 2002. "Predicción No-Lineal De Tipos De Cambio: Algoritmos Genéticos, Redes Neuronales Y Fusión De Datos," Working Papers 0205, Universidade de Vigo, Departamento de Economía Aplicada.
    7. Carlo Altavilla & Paul De Grauwe, 2010. "Forecasting and combining competing models of exchange rate determination," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
    8. Caginalp, Gunduz & DeSantis, Mark, 2017. "Does price efficiency increase with trading volume? Evidence of nonlinearity and power laws in ETFs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 436-452.
    9. Ayse Yilmaz & Ufuk Yolcu, 2022. "Dendritic neuron model neural network trained by modified particle swarm optimization for time‐series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 793-809, July.
    10. Kian-Ping Lim & Melvin J. Hinich & Venus Khim-Sen Liew, 2005. "Statistical Inadequacy of GARCH Models for Asian Stock Markets," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 4(3), pages 263-279, December.
    11. Hallin, Marc & La Vecchia, Davide, 2020. "A Simple R-estimation method for semiparametric duration models," Journal of Econometrics, Elsevier, vol. 218(2), pages 736-749.
    12. Donelli, Nicola & Peluso, Stefano & Mira, Antonietta, 2021. "A Bayesian semiparametric vector Multiplicative Error Model," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    13. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    14. Felix Chan & Michael McAleer, 2001. "Estimating Smooth Transition Autoregressive Models with GARCH Errors in the Presence of Extreme Observations and Outliers," ISER Discussion Paper 0539, Institute of Social and Economic Research, Osaka University.
    15. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    16. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    17. Barndorff-Nielsen, Ole E. & Graversen, Svend Erik & Jacod, Jean & Shephard, Neil, 2006. "Limit Theorems For Bipower Variation In Financial Econometrics," Econometric Theory, Cambridge University Press, vol. 22(4), pages 677-719, August.
    18. G. D. Gettinby & C. D. Sinclair & D. M. Power & R. A. Brown, 2004. "An Analysis of the Distribution of Extreme Share Returns in the UK from 1975 to 2000," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5‐6), pages 607-646, June.
    19. Han, Lin & Kordzakhia, Nino & Trück, Stefan, 2020. "Volatility spillovers in Australian electricity markets," Energy Economics, Elsevier, vol. 90(C).
    20. Pieters, Gina & Vivanco, Sofia, 2017. "Financial regulations and price inconsistencies across Bitcoin markets," Information Economics and Policy, Elsevier, vol. 39(C), pages 1-14.
    21. Arısoy, Yakup Eser & Altay-Salih, Aslıhan & Akdeniz, Levent, 2015. "Aggregate volatility expectations and threshold CAPM," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 231-253.

    More about this item

    Keywords

    time series; semiparametric model; k-NN estimation; local polynomial regression; volatility forecasting;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2010-041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RDC-Team (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.