IDEAS home Printed from https://ideas.repec.org/p/hhs/lunewp/2012_014.html
   My bibliography  Save this paper

Wavelet Improvement in Turning Point Detection using a Hidden Markov Model

Author

Listed:
  • Li, Yushu

    () (Department of Business and Management Science, Norwegian School of Economics)

  • Reese, Simon

    () (Department of Economics, Lund University)

Abstract

The Hidden Markov Model (HMM) has been widely used in regime classification and turning point detection for econometric series after the decisive paper by Hamilton (1989). The present paper will show that when using HMM to detect the turning point in cyclical series, the accuracy of the detection will be influenced when the data are exposed to high volatilities or combine multiple types of cycles that have different frequency bands. Moreover, outliers will be frequently misidentified as turning points. The present paper shows that these issues can be resolved by wavelet multi-resolution analysis based methods. By providing both frequency and time resolutions, the wavelet power spectrum can identify the process dynamics at various resolution levels. We apply a Monte Carlo experiment to show that the detection accuracy of HMMs is highly improved when combined with the wavelet approach. Further simulations demonstrate the excellent accuracy of this improved HMM method relative to another two change point detection algorithms. Two empirical examples illustrate how the wavelet method can be applied to improve turning point detection in practice.

Suggested Citation

  • Li, Yushu & Reese, Simon, 2012. "Wavelet Improvement in Turning Point Detection using a Hidden Markov Model," Working Papers 2012:14, Lund University, Department of Economics, revised 05 Apr 2014.
  • Handle: RePEc:hhs:lunewp:2012_014
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1, June.
    2. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    3. Hamilton, James D & Perez-Quiros, Gabriel, 1996. "What Do the Leading Indicators Lead?," The Journal of Business, University of Chicago Press, vol. 69(1), pages 27-49, January.
    4. Benoit Bellone & David Saint-Martin, 2004. "Detecting Turning Points with Many Predictors through Hidden Markov Models," Econometrics 0407001, University Library of Munich, Germany.
    5. Veiga, Helena & Grané, Aurea, 2009. "Wavelet-based detection of outliers in volatility models," DES - Working Papers. Statistics and Econometrics. WS ws090403, Universidad Carlos III de Madrid. Departamento de Estadística.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yushu Li & Simon Reese, 2014. "Wavelet improvement in turning point detection using a hidden Markov model: from the aspects of cyclical identification and outlier correction," Computational Statistics, Springer, vol. 29(6), pages 1481-1496, December.
    2. Benoît Bellone, 2006. "Une lecture probabiliste du cycle d’affaires américain," Économie et Prévision, Programme National Persée, vol. 172(1), pages 63-81.
    3. Chauvet, Marcelle, 2001. "A Monthly Indicator of Brazilian GDP," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 21(1), May.
    4. Francis X. Diebold & Glenn D. Rudebusch, 2001. "Five questions about business cycles," Economic Review, Federal Reserve Bank of San Francisco, pages 1-15.
    5. Sébastien Le Coent & Erwan Gautier & Benoît Bellone, 2006. "Les marchés financiers anticipent-ils les retournements conjoncturels ?," Économie et Prévision, Programme National Persée, vol. 172(1), pages 83-99.
    6. Moradi, Alireza, 2016. "Modeling Business Cycle Fluctuations through Markov Switching VAR:An Application to Iran," MPRA Paper 73608, University Library of Munich, Germany.
    7. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    8. Benoit Bellone, 2004. "Une lecture probabiliste du cycle d’affaires américain," Econometrics 0407002, University Library of Munich, Germany, revised 28 Mar 2005.
    9. DAVID E. ALLEN & MICHAEL McALEER & ROBERT J. POWELL & ABHAY K. SINGH, 2018. "Non-Parametric Multiple Change Point Analysis Of The Global Financial Crisis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-23, June.
    10. Perron, Pierre & Wada, Tatsuma, 2016. "Measuring business cycles with structural breaks and outliers: Applications to international data," Research in Economics, Elsevier, vol. 70(2), pages 281-303.
    11. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    12. Chun-Chang Lee & Chih-Min Liang & Hsing-Jung Chou, 2013. "Identifying Taiwan real estate cycle turning points- An application of the multivariate Markov-switching autoregressive Model," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 3(2), pages 1-1.
    13. Sergey V. Smirnov & Nikolay V. Kondrashov & Anna V. Petronevich, 2017. "Dating Cyclical Turning Points for Russia: Formal Methods and Informal Choices," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 13(1), pages 53-73, May.
    14. Ludmila Fadejeva & Aleksejs Melihovs, 2008. "The Baltic states and Europe: common factors of economic activity," Baltic Journal of Economics, Baltic International Centre for Economic Policy Studies, vol. 8(1), pages 75-96, October.
    15. Alejandro López-Vera & Andrés D. Pinchao-Rosero & Norberto Rodríguez-Niño, 2018. "Non-Linear Fiscal Multipliers for Public Expenditure and Tax Revenue in Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 36(85), pages 48-64, April.
    16. Calderón, César & Fuentes, J. Rodrigo, 2014. "Have business cycles changed over the last two decades? An empirical investigation," Journal of Development Economics, Elsevier, vol. 109(C), pages 98-123.
    17. Chris Birchenhall & Denise Osborn & Marianne Sensier, 2001. "Predicting UK Business Cycle Regimes," Scottish Journal of Political Economy, Scottish Economic Society, vol. 48(2), pages 179-195, May.
    18. Ahking, Francis W., 2014. "Measuring U.S. business cycles: A comparison of two methods and two indicators of economic activities," Journal of Economic and Social Measurement, IOS Press, issue 4, pages 199-216.
    19. Mili, Mehdi & Sahut, Jean-Michel & Teulon, Frédéric, 2012. "Non linear and asymmetric linkages between real growth in the Euro area and global financial market conditions: New evidence," Economic Modelling, Elsevier, vol. 29(3), pages 734-741.
    20. Konstantin A. Kholodilin, 2006. "Using the Dynamic Bi-Factor Model with Markov Switching to Predict the Cyclical Turns in the Large European Economies," Discussion Papers of DIW Berlin 554, DIW Berlin, German Institute for Economic Research.

    More about this item

    Keywords

    HMM; turning point; wavelet; outlier;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:lunewp:2012_014. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David Edgerton). General contact details of provider: http://edirc.repec.org/data/delunse.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.