IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04927211.html
   My bibliography  Save this paper

High-Frequency Tail Risk Premium and Stock Return Predictability

Author

Listed:
  • Caio Almeida

    (Princeton University)

  • Kim Ardison

    (SPX Capital, Rio De Janeiro, Brazil)

  • Gustavo Freire

    (Erasmus University Rotterdam)

  • René Garcia

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UdeM - Université de Montréal)

  • Piotr Orlowski

    (UdeM - Université de Montréal)

Abstract

We propose a novel measure of the market return tail risk premium based on minimum- distance state price densities recovered from high-frequency data. The tail risk premium extracted from intra-day S&P 500 returns predicts the market equity and variance risk premiums and expected excess returns on a cross section of characteristics-sorted portfolios. Additionally, we describe the differential role of the quantity of tail risk, and of the tail premium, in shaping the future distribution of index returns. Our results are robust to controlling for established measures of variance and tail risk, and of risk premiums, in the predictive models.

Suggested Citation

  • Caio Almeida & Kim Ardison & Gustavo Freire & René Garcia & Piotr Orlowski, 2024. "High-Frequency Tail Risk Premium and Stock Return Predictability," Post-Print hal-04927211, HAL.
  • Handle: RePEc:hal:journl:hal-04927211
    DOI: 10.1017/S0022109023001199
    Note: View the original document on HAL open archive server: https://hal.science/hal-04927211v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04927211v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1017/S0022109023001199?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mancini, Cecilia & Gobbi, Fabio, 2012. "Identifying The Brownian Covariation From The Co-Jumps Given Discrete Observations," Econometric Theory, Cambridge University Press, vol. 28(2), pages 249-273, April.
    2. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    3. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    4. Yacine Aït-Sahalia & Jean Jacod & Dacheng Xiu, 2020. "Inference on Risk Premia in Continuous-Time Asset Pricing Models," NBER Working Papers 28140, National Bureau of Economic Research, Inc.
    5. Geert Bekaert & Eric Engstrom, 2017. "Asset Return Dynamics under Habits and Bad Environment-Good Environment Fundamentals," Journal of Political Economy, University of Chicago Press, vol. 125(3), pages 713-760.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet Balcilar & Elie Bouri & Rangan Gupta & Christian Pierdzioch, 2021. "El Niño, La Niña, and the Forecastability of the Realized Variance of Heating Oil Price Movements," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    2. Wu, Hanlin & Li, Pan & Cao, Jiawei & Xu, Zijian, 2024. "Forecasting the Chinese crude oil futures volatility using jump intensity and Markov-regime switching model," Energy Economics, Elsevier, vol. 134(C).
    3. Liang, Chao & Tang, Linchun & Li, Yan & Wei, Yu, 2020. "Which sentiment index is more informative to forecast stock market volatility? Evidence from China," International Review of Financial Analysis, Elsevier, vol. 71(C).
    4. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2024. "Financial stress and realized volatility: The case of agricultural commodities," Research in International Business and Finance, Elsevier, vol. 71(C).
    5. He, Mengxi & Wen, Danyan & Xing, Lu & Zhang, Yaojie, 2024. "Industry volatility concentration and the predictability of aggregate stock market volatility," International Review of Economics & Finance, Elsevier, vol. 95(C).
    6. Jiqian Wang & Rangan Gupta & Oğuzhan Çepni & Feng Ma, 2023. "Forecasting international REITs volatility: the role of oil-price uncertainty," The European Journal of Finance, Taylor & Francis Journals, vol. 29(14), pages 1579-1597, September.
    7. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and state-level stock market realized volatility," Journal of Financial Markets, Elsevier, vol. 66(C).
    8. Rangan Gupta & Qiang Ji & Christian Pierdzioch, 2024. "Climate Policy Uncertainty and Financial Stress: Evidence for China," Working Papers 202428, University of Pretoria, Department of Economics.
    9. Stavros Degiannakis & George Filis, 2019. "Forecasting European economic policy uncertainty," Scottish Journal of Political Economy, Scottish Economic Society, vol. 66(1), pages 94-114, February.
    10. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024. "Business applications and state‐level stock market realized volatility: A forecasting experiment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 456-472, March.
    11. Jayawardena, Nirodha I. & Todorova, Neda & Li, Bin & Su, Jen-Je, 2016. "Forecasting stock volatility using after-hour information: Evidence from the Australian Stock Exchange," Economic Modelling, Elsevier, vol. 52(PB), pages 592-608.
    12. Bonato, Matteo & Çepni, Oğuzhan & Gupta, Rangan & Pierdzioch, Christian, 2021. "Do oil-price shocks predict the realized variance of U.S. REITs?," Energy Economics, Elsevier, vol. 104(C).
    13. Gong, Xue & Lai, Ping & He, Mengxi & Wen, Danyan, 2024. "Climate risk and energy futures high frequency volatility prediction," Energy, Elsevier, vol. 307(C).
    14. Varneskov, Rasmus & Voev, Valeri, 2013. "The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts," Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
    15. Wu, Lan & Xu, Weiju & Huang, Dengshi & Li, Pan, 2022. "Does the volatility spillover effect matter in oil price volatility predictability? Evidence from high-frequency data," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 299-306.
    16. Bonato, Matteo & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021. "A note on investor happiness and the predictability of realized volatility of gold," Finance Research Letters, Elsevier, vol. 39(C).
    17. Thomas Dimpfl & Stephan Jank, 2016. "Can Internet Search Queries Help to Predict Stock Market Volatility?," European Financial Management, European Financial Management Association, vol. 22(2), pages 171-192, March.
    18. Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    19. Lu, Xinjie & Ma, Feng & Wang, Jianqiong & Dong, Dayong, 2022. "Singlehanded or joint race? Stock market volatility prediction," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 734-754.
    20. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04927211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.