IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03780085.html
   My bibliography  Save this paper

Overview of the EROI, a tool to measure energy availability through the energy transition

Author

Listed:
  • Kevin Pahud

    (EPFL - Ecole Polytechnique Fédérale de Lausanne)

  • Greg de Temmerman

    (IHEIE - Institut des Hautes Etudes pour l’Innovation et l’Entrepreneuriat (IHEIE) - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres, Zenon Research)

Abstract

The importance of energy consumption to allow societies to thrive is well established and prospects of energy needs is well derived through the scientific literature. Yet, lesser discussions persist on the future availability of energy for current industrial economies, a crucial indicator for development. It is defined as net-energy analysis, where one must appropriate more energy than required to get it. The most common indicators are the energy payback time and the EROI (Energy Return of Investment). These indicators are used throughout literature either for energy vectors, energy systems or for broader societal applications. Following growing concerns about climate change, and with the increasing difficulty of extraction of fossil fuels, EROIs became tools to study the global energy transition with a focus on a possible minimum EROI required to maintain a complex society. However, the indicator is used with a large variety of methods, definitions, and boundaries. This led to a lack of consensus on whether a transition to renewable-based energy systems could still provide sufficient net energy for societies to thrive. The concepts of EROI were studied by compiling its various definitions, boundaries, and limits, allowing a clear view of the indicator to understand where and how it could be used. This led to finding three main classes of indicators: the physical EROI, an indicator based on energy consumption, a price-based societal EROI, an indicator using monetary expenditures to look at energy-related expenditures, and finally a socioeconomic EROI which looks at energy expenditures within a nation's economy. A detailed review of those use cases led to understanding that the EROI is often badly calculated through wrong boundaries, goals, or with old data and that no norm exists for its calculation. These inconsistencies tend to negatively bias renewable technologies as a solution to the energy transition. Furthermore, most calculations of minimal EROIs are based on fossil fuel infrastructure, with current energy systems being highly inefficient. The previously calculated minimal EROIs through literature, penalizing renewable technologies, are challenged. The study discusses the possibility of transitioning away from fossil fuels' dependence based on updated data and literature to finally conclude that renewable can offer sufficient energy through the energy transition. This sufficiency however comes with short-term limits followed by a possible drop in net-energy due to the transitory nature of the global shift to mitigate climate change.

Suggested Citation

  • Kevin Pahud & Greg de Temmerman, 2022. "Overview of the EROI, a tool to measure energy availability through the energy transition," Post-Print hal-03780085, HAL.
  • Handle: RePEc:hal:journl:hal-03780085
    DOI: 10.1109/IYCE54153.2022.9857542
    Note: View the original document on HAL open archive server: https://hal.science/hal-03780085
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03780085/document
    Download Restriction: no

    File URL: https://libkey.io/10.1109/IYCE54153.2022.9857542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Graham Palmer, 2019. "Renewables rise above fossil fuels," Nature Energy, Nature, vol. 4(7), pages 538-539, July.
    2. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    3. Raugei, Marco & Leccisi, Enrica & Fthenakis, Vasilis & Escobar Moragas, Rodrigo & Simsek, Yeliz, 2018. "Net energy analysis and life cycle energy assessment of electricity supply in Chile: Present status and future scenarios," Energy, Elsevier, vol. 162(C), pages 659-668.
    4. Carey W. King & Charles A.S. Hall, 2011. "Relating Financial and Energy Return on Investment," Sustainability, MDPI, vol. 3(10), pages 1-23, October.
    5. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    6. Michael Carbajales-Dale, 2019. "When is EROI Not EROI?," Biophysical Economics and Resource Quality, Springer, vol. 4(4), pages 1-4, December.
    7. Adam R. Brandt, 2011. "Oil Depletion and the Energy Efficiency of Oil Production: The Case of California," Sustainability, MDPI, vol. 3(10), pages 1-22, October.
    8. Raugei, Marco & Fullana-i-Palmer, Pere & Fthenakis, Vasilis, 2012. "The energy return on energy investment (EROI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles," Energy Policy, Elsevier, vol. 45(C), pages 576-582.
    9. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    10. Sers, Martin R. & Victor, Peter A., 2018. "The Energy-emissions Trap," Ecological Economics, Elsevier, vol. 151(C), pages 10-21.
    11. Christophe McGlade & Paul Ekins, 2015. "The geographical distribution of fossil fuels unused when limiting global warming to 2 °C," Nature, Nature, vol. 517(7533), pages 187-190, January.
    12. Marco Raugei, 2019. "Net energy analysis must not compare apples and oranges," Nature Energy, Nature, vol. 4(2), pages 86-88, February.
    13. David J. Murphy & Michael Carbajales-Dale & Devin Moeller, 2016. "Comparing Apples to Apples: Why the Net Energy Analysis Community Needs to Adopt the Life-Cycle Analysis Framework," Energies, MDPI, vol. 9(11), pages 1-15, November.
    14. Bullard, Clark W. & Penner, Peter S. & Pilati, David A., 1978. "Net energy analysis : Handbook for combining process and input-output analysis," Resources and Energy, Elsevier, vol. 1(3), pages 267-313, November.
    15. Diesendorf, M. & Wiedmann, T., 2020. "Implications of Trends in Energy Return on Energy Invested (EROI) for Transitioning to Renewable Electricity," Ecological Economics, Elsevier, vol. 176(C).
    16. Lewis C. King & Jeroen C. J. M. van den Bergh, 2018. "Implications of net energy-return-on-investment for a low-carbon energy transition," Nature Energy, Nature, vol. 3(4), pages 334-340, April.
    17. Sgouris Sgouridis & Michael Carbajales-Dale & Denes Csala & Matteo Chiesa & Ugo Bardi, 2019. "Comparative net energy analysis of renewable electricity and carbon capture and storage," Nature Energy, Nature, vol. 4(6), pages 456-465, June.
    18. Casler, Stephen & Wilbur, Suzanne, 1984. "Energy input-output analysis : A simple guide," Resources and Energy, Elsevier, vol. 6(2), pages 187-201, June.
    19. Gagnon, Luc, 2008. "Civilisation and energy payback," Energy Policy, Elsevier, vol. 36(9), pages 3317-3322, September.
    20. Lee, J. & Bazilian, M. & Sovacool, B. & Hund, K. & Jowitt, S.M. & Nguyen, T.P. & Månberger, A. & Kah, M. & Greene, S. & Galeazzi, C. & Awuah-Offei, K. & Moats, M. & Tilton, J. & Kukoda, S., 2020. "Reviewing the material and metal security of low-carbon energy transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    21. David J. Murphy & Charles A.S. Hall & Michael Dale & Cutler Cleveland, 2011. "Order from Chaos: A Preliminary Protocol for Determining the EROI of Fuels," Sustainability, MDPI, vol. 3(10), pages 1-20, October.
    22. Michael Carbajales-Dale & Charles J. Barnhart & Adam R. Brandt & Sally M. Benson, 2014. "A better currency for investing in a sustainable future," Nature Climate Change, Nature, vol. 4(7), pages 524-527, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    2. Louis Delannoy & Pierre-Yves Longaretti & David. J. Murphy & Emmanuel Prados, 2021. "Assessing Global Long-Term EROI of Gas: A Net-Energy Perspective on the Energy Transition," Energies, MDPI, vol. 14(16), pages 1-16, August.
    3. Aljoša Slameršak & Giorgos Kallis & Daniel W. O’Neill, 2022. "Energy requirements and carbon emissions for a low-carbon energy transition," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    5. David J. Murphy & Marco Raugei & Michael Carbajales-Dale & Brenda Rubio Estrada, 2022. "Energy Return on Investment of Major Energy Carriers: Review and Harmonization," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    6. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    8. Hongshuo Yan & Lianyong Feng & Jianliang Wang & Yuanying Chi & Yue Ma, 2021. "A Comprehensive Net Energy Analysis and Outlook of Energy System in China," Biophysical Economics and Resource Quality, Springer, vol. 6(4), pages 1-14, December.
    9. Jackson, Andrew & Jackson, Tim, 2021. "Modelling energy transition risk: The impact of declining energy return on investment (EROI)," Ecological Economics, Elsevier, vol. 185(C).
    10. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    11. Marco Raugei & Alessio Peluso & Enrica Leccisi & Vasilis Fthenakis, 2020. "Life-Cycle Carbon Emissions and Energy Return on Investment for 80% Domestic Renewable Electricity with Battery Storage in California (U.S.A.)," Energies, MDPI, vol. 13(15), pages 1-22, August.
    12. Carey W. King & John P. Maxwell & Alyssa Donovan, 2015. "Comparing World Economic and Net Energy Metrics, Part 2: Total Economy Expenditure Perspective," Energies, MDPI, vol. 8(11), pages 1-22, November.
    13. King, Carey W., 2014. "Matrix method for comparing system and individual energy return ratios when considering an energy transition," Energy, Elsevier, vol. 72(C), pages 254-265.
    14. Melgar-Melgar, Rigo E. & Hall, Charles A.S., 2020. "Why ecological economics needs to return to its roots: The biophysical foundation of socio-economic systems," Ecological Economics, Elsevier, vol. 169(C).
    15. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    16. Marco Vittorio Ecclesia & João Santos & Paul E. Brockway & Tiago Domingos, 2022. "A Comprehensive Societal Energy Return on Investment Study of Portugal Reveals a Low but Stable Value," Energies, MDPI, vol. 15(10), pages 1-22, May.
    17. Luciano Celi, 2021. "Deriving EROI for Thirty Large Oil Companies Using the CO2 Proxy from 1999 to 2018," Biophysical Economics and Resource Quality, Springer, vol. 6(4), pages 1-12, December.
    18. Huang, Chen & Gu, Baihe & Chen, Yingchao & Tan, Xianchun & Feng, Lianyong, 2019. "Energy return on energy, carbon, and water investment in oil and gas resource extraction: Methods and applications to the Daqing and Shengli oilfields," Energy Policy, Elsevier, vol. 134(C).
    19. Fizaine, Florian & Court, Victor, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Ecological Economics, Elsevier, vol. 110(C), pages 106-118.
    20. Nick King & Aled Jones, 2020. "An Assessment of Civil Nuclear ‘Enabling’ and ‘Amelioration’ Factors for EROI Analysis," Sustainability, MDPI, vol. 12(20), pages 1-34, October.

    More about this item

    Keywords

    Net-energy; EROI; Energy transition;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03780085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.