Data: A collaborative ?
[Données: une stratégie collaborative?]
Author
Abstract
Suggested Citation
DOI: 10.1016/j.hitech.2020.100370
Note: View the original document on HAL open archive server: https://hal.science/hal-02930902v1
Download full text from publisher
References listed on IDEAS
- Erevelles, Sunil & Fukawa, Nobuyuki & Swayne, Linda, 2016. "Big Data consumer analytics and the transformation of marketing," Journal of Business Research, Elsevier, vol. 69(2), pages 897-904.
- Azra Hanić & Živka Pržulj & Marija Lazarević MoravÄ ević, 2016. "Characteristics of Human Resource Management in SMEs in Serbia," European Journal of Economics and Business Studies Articles, Revistia Research and Publishing, vol. 2, ejes_v2_i.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rajesh Chidananda Reddy & Biplab Bhattacharjee & Debasisha Mishra & Anandadeep Mandal, 2022. "A systematic literature review towards a conceptual framework for enablers and barriers of an enterprise data science strategy," Information Systems and e-Business Management, Springer, vol. 20(1), pages 223-255, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ladi Daodu & Prof. Dr. Amiya Bhaumik, 2024. "Impacts of Innovation and Business Analytics on the Performance of the Service Sector in Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(6), pages 77-91, June.
- de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
- Irina Maiorescu & Mihaela Bucur & Bogdan Georgescu & Daniel Moise & Vasile Alecsandru Strat & Ion Daniel Zgură, 2020. "Social Media and IOT Wearables in Developing Marketing Strategies. Do SMEs Differ From Large Enterprises?," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
- Constant Berkhout & Abhi Bhattacharya & Carlos Bauer & Ross W. Johnson, 2024. "Revisiting the construct of data-driven decision making: antecedents, scope, and boundaries," SN Business & Economics, Springer, vol. 4(10), pages 1-23, October.
- Sidney Anderson, 2024. "Expanding data literacy to include data preparation: building a sound marketing analytics foundation," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(2), pages 227-234, June.
- Brewis, Claire & Dibb, Sally & Meadows, Maureen, 2023. "Leveraging big data for strategic marketing: A dynamic capabilities model for incumbent firms," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
- Leogrande, Angelo, 2021.
"The Destruction of Price-Representativeness,"
MPRA Paper
111239, University Library of Munich, Germany.
- Leogrande, Angelo, 2021. "The Destruction of Price-Representativeness," MPRA Paper 111224, University Library of Munich, Germany.
- Kumar, V. & Ramachandran, Divya & Kumar, Binay, 2021. "Influence of new-age technologies on marketing: A research agenda," Journal of Business Research, Elsevier, vol. 125(C), pages 864-877.
- Raphaël Maucuer & Alexandre Renaud & Sébastien Ronteau & Laurent Muzellec, 2022. "What can we learn from marketers? A bibliometric analysis of the marketing literature on business model research," Post-Print hal-03718522, HAL.
- De Bruyn, Arnaud & Viswanathan, Vijay & Beh, Yean Shan & Brock, Jürgen Kai-Uwe & von Wangenheim, Florian, 2020. "Artificial Intelligence and Marketing: Pitfalls and Opportunities," Journal of Interactive Marketing, Elsevier, vol. 51(C), pages 91-105.
- Jingmei Gao & Zahid Sarwar, 2024. "How do firms create business value and dynamic capabilities by leveraging big data analytics management capability?," Information Technology and Management, Springer, vol. 25(3), pages 283-304, September.
- Boccali, Filippo & Mariani, Marcello M. & Visani, Franco & Mora-Cruz, Alexandra, 2022. "Innovative value-based price assessment in data-rich environments: Leveraging online review analytics through Data Envelopment Analysis to empower managers and entrepreneurs," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
- Eleonora Di Maria & Marco Bettiol & Mauro Capestro, 2023. "How Italian Fashion Brands Beat COVID-19: Manufacturing, Sustainability, and Digitalization," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
- Caputo, Andrea & Pizzi, Simone & Pellegrini, Massimiliano M. & Dabić, Marina, 2021. "Digitalization and business models: Where are we going? A science map of the field," Journal of Business Research, Elsevier, vol. 123(C), pages 489-501.
- Gupta, Shivam & Justy, Théo & Kamboj, Shampy & Kumar, Ajay & Kristoffersen, Eivind, 2021. "Big data and firm marketing performance: Findings from knowledge-based view," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
- Mustak, Mekhail & Hallikainen, Heli & Laukkanen, Tommi & Plé, Loïc & Hollebeek, Linda D. & Aleem, Majid, 2024. "Using machine learning to develop customer insights from user-generated content," Journal of Retailing and Consumer Services, Elsevier, vol. 81(C).
- Jain, Geetika & Paul, Justin & Shrivastava, Archana, 2021. "Hyper-personalization, co-creation, digital clienteling and transformation," Journal of Business Research, Elsevier, vol. 124(C), pages 12-23.
- Miikka Blomster & Timo Koivumäki, 2022. "Exploring the resources, competencies, and capabilities needed for successful machine learning projects in digital marketing," Information Systems and e-Business Management, Springer, vol. 20(1), pages 123-169, March.
- Adam C. Merkle & Catherine Hessick & Britton R. Leggett & Larry Goehrig & Kenneth O’Connor, 2020. "Exploring the components of brand equity amid declining ticket sales in Major League Baseball," Journal of Marketing Analytics, Palgrave Macmillan, vol. 8(3), pages 149-164, September.
- Suo, Xuekun & Zhang, Longting & Guo, Rong & Lin, Han & Yu, Mingchuan & Du, Xiuhong, 2024. "The inverted U-shaped association between digital economy and corporate total factor productivity: A knowledge-based perspective," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
More about this item
Keywords
Data management; product innovation; competition; vertical cooperation; coopetition; SMEs; Big data challenges;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2020-09-28 (Big Data)
- NEP-CSE-2020-09-28 (Economics of Strategic Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02930902. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.