IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02405859.html
   My bibliography  Save this paper

Quantile Mixing and Model Uncertainty Measures

Author

Listed:
  • Thierry Cohignac
  • Nabil Kazi-Tani

    (LSAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

Abstract

In this paper, we introduce a new simple methodology for combining two models, which are given in the form of two probability distributions. We use convex combinations of quantile functions, with weights depending on the quantile level. We choose the weights by comparing, for each quantile level, a given measure of model uncertainty calculated for the two probability distributions that we want to combine. This methodology is particularly useful in insurance and reinsurance of natural disasters, for which there are various physical models available, along with historical data. We apply our procedure to a real portfolio of insurance losses, and show that the model uncertainty measures have a similar behavior on the set of various insurance losses that we consider. This article serves also as an introduction to the use of model uncertainty measures in actuarial practice.

Suggested Citation

  • Thierry Cohignac & Nabil Kazi-Tani, 2019. "Quantile Mixing and Model Uncertainty Measures," Post-Print hal-02405859, HAL.
  • Handle: RePEc:hal:journl:hal-02405859
    Note: View the original document on HAL open archive server: https://hal.science/hal-02405859v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02405859v1/document
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02405859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.