IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01885288.html
   My bibliography  Save this paper

Un Indice De Pouvoir D’Aversion Au Risque Dans Un Jeu Simple

Author

Listed:
  • Anselme Njocke

    (CATT - Centre d'Analyse Théorique et de Traitement des données économiques - UPPA - Université de Pau et des Pays de l'Adour)

Abstract

Nous proposons, dans ce travail, un indice de pouvoir d'aversion au risque fondé sur l'indice de prudence (ou la capacité d'influence) d'un joueur dans une négociation, et sur l'ordre de formation des coalitions. Il apparaîtra que l'indice de pouvoir d'aversion au risque dans un jeu simple généralise, d'une certaine manière, certains indices de pouvoir classiques rencontrés dans la littérature tels que l'indice de pouvoir de Shapley-Shubik (1954), l'indice de Johnston (1978) et l'indice de Deegan-Packel (1978). En soumettant l'indice de pouvoir d'aversion au risque à l'épreuve d'un certain nombre d'axiomes, il apparaîtra que sa violation, ou sa non violation de ces axiomes est fortement liée au vecteur d'indices de prudence des joueurs. Nous montrons, aussi que, dans une société constituée exclusivement de membres timorés absolus, l'indice de pouvoir d'aversion au risque conduit à un partage égalitaire du pouvoir entre ses différents membres, quelles que soient leurs contributions marginales. Nous montrons de même que, lorsque la règle de décision est l'unanimité, et qu'il n'existe que deux classes de joueurs, les timorés absolus, d'une part, et les vaillants absolus d'autre part, l'indice de pouvoir d'aversion au risque attribue un pouvoir nul à chaque joueur timoré absolu, et la totalité du pouvoir (répartie de manière égalitaire) aux joueurs vaillants. Nous montrons enfin que le jeu dictatorial s'apparente à un jeu où le dictateur serait le seul joueur vaillant absolu, pendant que tous les autres joueurs seraient des timorés absolus, et ce quelle que soit la règle de décision nécessitant un quota strictement supérieur à l'apport individuel en voix (ou en poids) le plus élevé dans un jeu simple (ou pondéré).

Suggested Citation

  • Anselme Njocke, 2014. "Un Indice De Pouvoir D’Aversion Au Risque Dans Un Jeu Simple," Post-Print hal-01885288, HAL.
  • Handle: RePEc:hal:journl:hal-01885288
    Note: View the original document on HAL open archive server: https://univ-pau.hal.science/hal-01885288v2
    as

    Download full text from publisher

    File URL: https://univ-pau.hal.science/hal-01885288v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Edward Packel & John Deegan, 1980. "An axiomated family of power indices for simple n-person games," Public Choice, Springer, vol. 35(2), pages 229-239, January.
    3. Dominique Lepelley & N. Andjiga & F. Chantreuil, 2003. "La mesure du pouvoir de vote," Post-Print halshs-00069255, HAL.
    4. Pradeep Dubey & Lloyd S. Shapley, 1979. "Mathematical Properties of the Banzhaf Power Index," Mathematics of Operations Research, INFORMS, vol. 4(2), pages 99-131, May.
    5. Nowak, Andrzej S & Radzik, Tadeusz, 1994. "A Solidarity Value for n-Person Transferable Utility Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(1), pages 43-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianfranco Gambarelli, 1999. "Maximax Apportionments," Group Decision and Negotiation, Springer, vol. 8(6), pages 441-461, November.
    2. Csóka, Péter & Illés, Ferenc & Solymosi, Tamás, 2022. "On the Shapley value of liability games," European Journal of Operational Research, Elsevier, vol. 300(1), pages 378-386.
    3. Meinhardt, Holger Ingmar, 2021. "Disentangle the Florentine Families Network by the Pre-Kernel," MPRA Paper 106482, University Library of Munich, Germany.
    4. Casajus, André & Huettner, Frank, 2014. "Weakly monotonic solutions for cooperative games," Journal of Economic Theory, Elsevier, vol. 154(C), pages 162-172.
    5. André Casajus & Rodrigue Tido Takeng, 2024. "Second-order productivity, second-order payoffs, and the Banzhaf value," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(3), pages 989-1004, September.
    6. Anselme Njocke, 2015. "Une Valeur D’Aversion Au Risque Dans Un Jeu Coopératif À Utilités Transférables," Post-Print hal-01885284, HAL.
    7. René van den Brink & Agnieszka Rusinowska, 2017. "The degree measure as utility function over positions in networks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01592181, HAL.
    8. Artyom Jelnov & Yair Tauman, 2015. "Erratum to: Voting power and proportional representation of voters," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 1049-1049, November.
    9. Sascha Kurz, 2020. "A note on limit results for the Penrose–Banzhaf index," Theory and Decision, Springer, vol. 88(2), pages 191-203, March.
    10. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    11. Zheng, Xiao-Xue & Li, Deng-Feng & Liu, Zhi & Jia, Fu & Lev, Benjamin, 2021. "Willingness-to-cede behaviour in sustainable supply chain coordination," International Journal of Production Economics, Elsevier, vol. 240(C).
    12. Hiller Tobias, 2021. "Who Bears an Employee’s Special Annual Payment?," Review of Law & Economics, De Gruyter, vol. 17(1), pages 223-237, March.
    13. Kurz, Sascha, 2018. "The power of the largest player," Economics Letters, Elsevier, vol. 168(C), pages 123-126.
    14. Courtin, Sébastien, 2022. "Evaluation of decision power in multi-dimensional rules," Mathematical Social Sciences, Elsevier, vol. 115(C), pages 27-36.
    15. Bertrand Mbama Engoulou & Pierre Wambo & Lawrence Diffo Lambo, 2023. "A Characterization of the Totally Critical Raw Banzhaf Power Index on Dichotomous Voting Games with Several Levels of Approval in Input," Group Decision and Negotiation, Springer, vol. 32(4), pages 871-888, August.
    16. Izabella Stach, 2022. "Reformulation of Public Help Index θ Using Null Player Free Winning Coalitions," Group Decision and Negotiation, Springer, vol. 31(2), pages 317-334, April.
    17. Sascha Kurz, 2014. "Measuring Voting Power in Convex Policy Spaces," Economies, MDPI, vol. 2(1), pages 1-33, March.
    18. Dongshuang Hou & Aymeric Lardon & Panfei Sun & Hao Sun, 2019. "Procedural and optimization implementation of the weighted ENSC value," Theory and Decision, Springer, vol. 87(2), pages 171-182, September.
    19. Bendel, Dan & Haviv, Moshe, 2018. "Cooperation and sharing costs in a tandem queueing network," European Journal of Operational Research, Elsevier, vol. 271(3), pages 926-933.
    20. Artyom Jelnov & Yair Tauman, 2014. "Voting power and proportional representation of voters," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(4), pages 747-766, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01885288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.