IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v43y2014i4p747-766.html
   My bibliography  Save this article

Voting power and proportional representation of voters

Author

Listed:
  • Artyom Jelnov

    ()

  • Yair Tauman

    ()

Abstract

We prove that for the proportional representative election system if parties’ sizes are uniformly distributed on the simplex, the expected ratio of a party size to its political power, measured by the Shapley–Shubik index, converges to $$1$$ 1 , as the number $$n$$ n of parties increases indefinitely. The rate of convergence is high and it is of the magnitude of $$\frac{1}{n}$$ 1 n . Empirical evidence from the Netherlands elections supports our result. A comparison with the Banzhaf index is provided. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Artyom Jelnov & Yair Tauman, 2014. "Voting power and proportional representation of voters," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(4), pages 747-766, November.
  • Handle: RePEc:spr:jogath:v:43:y:2014:i:4:p:747-766
    DOI: 10.1007/s00182-013-0400-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00182-013-0400-z
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lehrer, E, 1988. "An Axiomatization of the Banzhaf Value," International Journal of Game Theory, Springer;Game Theory Society, vol. 17(2), pages 89-99.
    2. Nicolas Houy & William S. Zwicker, 2013. "The geometry of voting power : weighted voting and hyper-­ellipsoids," Working Papers halshs-00772953, HAL.
    3. Lindner, Ines & Machover, Moshe, 2004. "L.S. Penrose's limit theorem: proof of some special cases," Mathematical Social Sciences, Elsevier, vol. 47(1), pages 37-49, January.
    4. Raphael Debets, 2008. "Performance Budgeting in the Netherlands," OECD Journal on Budgeting, OECD Publishing, vol. 7(4), pages 1-20.
    5. Dan Felsenthal & Moshé Machover, 2005. "Voting power measurement: a story of misreinvention," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 25(2), pages 485-506, December.
    6. repec:cup:apsrev:v:48:y:1954:i:03:p:787-792_00 is not listed on IDEAS
    7. Chang, Pao-Li & Chua, Vincent C.H. & Machover, Moshe, 2006. "L S Penrose's limit theorem: Tests by simulation," Mathematical Social Sciences, Elsevier, vol. 51(1), pages 90-106, January.
    8. Lindner, Ines & Owen, Guillermo, 2007. "Cases where the Penrose limit theorem does not hold," Mathematical Social Sciences, Elsevier, vol. 53(3), pages 232-238, May.
    9. Dubey, Pradeep & Einy, Ezra & Haimanko, Ori, 2005. "Compound voting and the Banzhaf index," Games and Economic Behavior, Elsevier, vol. 51(1), pages 20-30, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Migheli, 2016. "Measuring Representativeness in Different Electoral Systems, Using Italian and Dutch Data," Group Decision and Negotiation, Springer, vol. 25(4), pages 723-748, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:43:y:2014:i:4:p:747-766. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.