IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v115y2022icp27-36.html
   My bibliography  Save this article

Evaluation of decision power in multi-dimensional rules

Author

Listed:
  • Courtin, Sébastien

Abstract

This work deals with the evaluation of decision power in multi-dimensional rules. Courtin and Laruelle (2020) introduced a decision process that specifies the collective acceptance or rejection of a proposal with several dimensions. The decision process is modeled as follows: (i) There are several individuals. (ii) There are several dimensions. (iii) Each of the individuals expresses a binary choice (“Yes” or “No”) on each dimension. (iv) A decision process maps each choice to a final binary decision (“Yes” or “No”). We extend and characterize six well-known power indices within this context: the Shapley–Shubik index (Shapley and Shubik, 1954), the Banzhaf index (Banzhaf, 1965), the Public good index (Holler, 1982), the Null individual free index (Alonso-Meijide et al., 2011), the Shift index (Alonso-Meijide and Freixas, 2010) and the Deegan–Packel index (Deegan and Packel, 1978).

Suggested Citation

  • Courtin, Sébastien, 2022. "Evaluation of decision power in multi-dimensional rules," Mathematical Social Sciences, Elsevier, vol. 115(C), pages 27-36.
  • Handle: RePEc:eee:matsoc:v:115:y:2022:i:c:p:27-36
    DOI: 10.1016/j.mathsocsci.2021.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165489621001116
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.mathsocsci.2021.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Courtin, Sébastien & Laruelle, Annick, 2020. "Multi-dimensional rules," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 1-7.
    2. Sébastien Courtin & Zéphirin Nganmeni & Bertrand Tchantcho, 2016. "The Shapley–Shubik power index for dichotomous multi-type games," Theory and Decision, Springer, vol. 81(3), pages 413-426, September.
    3. Lehrer, E, 1988. "An Axiomatization of the Banzhaf Value," International Journal of Game Theory, Springer;Game Theory Society, vol. 17(2), pages 89-99.
    4. Laruelle,Annick & Valenciano,Federico, 2011. "Voting and Collective Decision-Making," Cambridge Books, Cambridge University Press, number 9780521182638, September.
    5. Courtin, Sébastien & Nganmeni, Zéphirin & Tchantcho, Bertrand, 2017. "Dichotomous multi-type games with a coalition structure," Mathematical Social Sciences, Elsevier, vol. 86(C), pages 9-17.
    6. Lorenzo-Freire, S. & Alonso-Meijide, J.M. & Casas-Mendez, B. & Fiestras-Janeiro, M.G., 2007. "Characterizations of the Deegan-Packel and Johnston power indices," European Journal of Operational Research, Elsevier, vol. 177(1), pages 431-444, February.
    7. Dominique Lepelley & N. Andjiga & F. Chantreuil, 2003. "La mesure du pouvoir de vote," Post-Print halshs-00069255, HAL.
    8. Pradeep Dubey & Lloyd S. Shapley, 1979. "Mathematical Properties of the Banzhaf Power Index," Mathematics of Operations Research, INFORMS, vol. 4(2), pages 99-131, May.
    9. Annick Laruelle & Federico Valenciano, 2012. "Quaternary dichotomous voting rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(3), pages 431-454, March.
    10. Sébastien Courtin & Zéphirin Nganmeni & Bertrand Tchantcho, 2017. "Dichotomous multi-type games with a coalition structure," Post-Print halshs-01545772, HAL.
    11. Sébastien Courtin & Zéphirin Nganmeni & Bertrand Tchantcho, 2016. "The Shapley-Shubik power index for dichotomous multi-type games," Post-Print halshs-01545769, HAL.
    12. Alonso-Meijide, J.M. & Casas-Mendez, B. & Holler, M.J. & Lorenzo-Freire, S., 2008. "Computing power indices: Multilinear extensions and new characterizations," European Journal of Operational Research, Elsevier, vol. 188(2), pages 540-554, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastien Courtin & Bertrand Tchantcho, 2019. "Public Good Indices for Games with Several Levels of Approval," Post-Print halshs-02319527, HAL.
    2. Sébastien Courtin & Zéphirin Nganmeni & Bertrand Tchantcho, 2017. "Dichotomous multi-type games with a coalition structure," Post-Print halshs-01545772, HAL.
    3. Courtin, Sébastien & Nganmeni, Zéphirin & Tchantcho, Bertrand, 2017. "Dichotomous multi-type games with a coalition structure," Mathematical Social Sciences, Elsevier, vol. 86(C), pages 9-17.
    4. Berghammer, Rudolf & Bolus, Stefan & Rusinowska, Agnieszka & de Swart, Harrie, 2011. "A relation-algebraic approach to simple games," European Journal of Operational Research, Elsevier, vol. 210(1), pages 68-80, April.
    5. Sébastien Courtin & Zéphirin Nganmeni & Bertrand Tchantcho, 2016. "The Shapley–Shubik power index for dichotomous multi-type games," Theory and Decision, Springer, vol. 81(3), pages 413-426, September.
    6. Sébastien Courtin & Zephirin Nganmeni & Bertrand Tchantcho, 2015. "Dichotomous multi-type games: Shapley-Shubik and Banzhaf-Coleman power indices," THEMA Working Papers 2015-05, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    7. Josep Freixas & Montserrat Pons, 2017. "Using the Multilinear Extension to Study Some Probabilistic Power Indices," Group Decision and Negotiation, Springer, vol. 26(3), pages 437-452, May.
    8. Kurz, Sascha & Mayer, Alexander & Napel, Stefan, 2021. "Influence in weighted committees," European Economic Review, Elsevier, vol. 132(C).
    9. Aguiar, Victor H. & Pongou, Roland & Tondji, Jean-Baptiste, 2018. "A non-parametric approach to testing the axioms of the Shapley value with limited data," Games and Economic Behavior, Elsevier, vol. 111(C), pages 41-63.
    10. Kong, Qianqian & Peters, Hans, 2023. "Power indices for networks, with applications to matching markets," European Journal of Operational Research, Elsevier, vol. 306(1), pages 448-456.
    11. Courtin, Sébastien & Laruelle, Annick, 2020. "Multi-dimensional rules," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 1-7.
    12. Constandina Koki & Stefanos Leonardos, 2019. "Coalitions and Voting Power in the Greek Parliament of 2012: A Case-Study," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 35(4), pages 295-313, April.
    13. Joseph Armel Momo Kenfack & Bertrand Tchantcho & Bill Proces Tsague, 2019. "On the ordinal equivalence of the Jonhston, Banzhaf and Shapley–Shubik power indices for voting games with abstention," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 647-671, June.
    14. Barua, Rana & Chakravarty, Satya R. & Sarkar, Palash, 2009. "Minimal-axiom characterizations of the Coleman and Banzhaf indices of voting power," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 367-375, November.
    15. Sébastien Courtin & Zéphirin Nganmeni & Bertrand Tchantcho, 2016. "The Shapley-Shubik power index for dichotomous multi-type games," Post-Print halshs-01545769, HAL.
    16. van den Brink, René, 2012. "Efficiency and collusion neutrality in cooperative games and networks," Games and Economic Behavior, Elsevier, vol. 76(1), pages 344-348.
    17. Yuto Ushioda & Masato Tanaka & Tomomi Matsui, 2022. "Monte Carlo Methods for the Shapley–Shubik Power Index," Games, MDPI, vol. 13(3), pages 1-14, June.
    18. Friedman, Jane & Parker, Cameron, 2018. "The conditional Shapley–Shubik measure for ternary voting games," Games and Economic Behavior, Elsevier, vol. 108(C), pages 379-390.
    19. Stefan Napel & Mika Widgrén, 2011. "Strategic versus non-strategic voting power in the EU Council of Ministers: the consultation procedure," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 37(3), pages 511-541, September.
    20. Mustapha Ridaoui & Michel Grabisch & Christophe Labreuche, 2018. "An axiomatisation of the Banzhaf value and interaction index for multichoice games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02381119, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:115:y:2022:i:c:p:27-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.