IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Attitude toward imprecise information

  • Thibault Gajdos

    ()

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Panthéon-Sorbonne - CNRS)

  • Takashi Hayashi

    ()

    (Department of Economics, University of Texas at Austin - University of Texas at Austin)

  • Jean-Marc Tallon

    ()

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Panthéon-Sorbonne - CNRS, EEP-PSE - Ecole d'Économie de Paris - Paris School of Economics)

  • Jean-Christophe Vergnaud

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Panthéon-Sorbonne - CNRS)

This paper presents an axiomatic model of decision making under uncertainty which incorporates objective but imprecise information. Information is assumed to take the form of a probability-possibility set, that is, a set $P$ of probability measures on the state space. The decision maker is told that the true probability law lies in $P$ and is assumed to rank pairs of the form $(P,f) $ where $f$ is an act mapping states into outcomes. The key representation result delivers maxmin expected utility where the min operator ranges over a set of probability priors --just as in the maxmin expected utility (MEU) representation result of \cite{GILB/SCHM/89}. However, unlike the MEU representation, the representation here also delivers a mapping, $\varphi$, which links the probability-possibility set, describing the available information, to the set of revealed priors. The mapping $\varphi$ is shown to represent the decision maker's attitude to imprecise information: under our axioms, the set of representation priors is constituted as a selection from the probability-possibility set. This allows both expected utility when the selected set is a singleton and extreme pessimism when the selected set is the same as the probability-possibility set, i.e. , $\varphi$ is the identity mapping. We define a notion of comparative imprecision aversion and show it is characterized by inclusion of the sets of revealed probability distributions, irrespective of the utility functions that capture risk attitude. We also identify an explicit attitude toward imprecision that underlies usual hedging axioms. Finally, we characterize, under extra axioms, a more specific functional form, in which the set of selected probability distributions is obtained by (i) solving for the ``mean value'' of the probability-possibility set, and (ii) shrinking the probability-possibility set toward the mean value to a degree determined by preferences.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://halshs.archives-ouvertes.fr/halshs-00451982/document
Download Restriction: no

Paper provided by HAL in its series Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) with number halshs-00451982.

as
in new window

Length:
Date of creation: May 2008
Date of revision:
Handle: RePEc:hal:cesptp:halshs-00451982
Note: View the original document on HAL open archive server: https://halshs.archives-ouvertes.fr/halshs-00451982
Contact details of provider: Web page: https://hal.archives-ouvertes.fr/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Wojciech Olszewski, 2007. "Preferences Over Sets of Lotteries -super-1," Review of Economic Studies, Oxford University Press, vol. 74(2), pages 567-595.
  2. Peter Klibanoff & Massimo Marinacci & Sujoy Mukerji, 2002. "A smooth model of decision making under ambiguity," ICER Working Papers - Applied Mathematics Series 11-2003, ICER - International Centre for Economic Research, revised Apr 2003.
  3. Mukerji, S. & Tallon, J.-M., 1999. "Ambiguity Aversion and Incompleteness of Financial Markets," Papiers d'Economie Mathématique et Applications 1999-28, Université Panthéon-Sorbonne (Paris 1).
  4. F J Anscombe & R J Aumann, 2000. "A Definition of Subjective Probability," Levine's Working Paper Archive 7591, David K. Levine.
  5. David Schmeidler, 1989. "Subjective Probability and Expected Utility without Additivity," Levine's Working Paper Archive 7662, David K. Levine.
  6. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
  7. Tapking, Jens, 2004. "Axioms for preferences revealing subjective uncertainty and uncertainty aversion," Journal of Mathematical Economics, Elsevier, vol. 40(7), pages 771-797, November.
  8. Thibault Gajdos & Jean-Marc Tallon & Jean-Christophe Vergnaud, 2002. "Decision Making with Imprecise Probabilistic Information," ICER Working Papers - Applied Mathematics Series 18-2003, ICER - International Centre for Economic Research, revised May 2003.
  9. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2006. "Ambiguity Aversion, Robustness, and the Variational Representation of Preferences," Econometrica, Econometric Society, vol. 74(6), pages 1447-1498, November.
  10. Epstein, Larry G & Wang, Tan, 1994. "Intertemporal Asset Pricing Under Knightian Uncertainty," Econometrica, Econometric Society, vol. 62(2), pages 283-322, March.
  11. Ghirardato, Paolo & Marinacci, M., 1997. "Ambiguity Made Precise: A Comparative Foundation and Some Implications," Working Papers 1026, California Institute of Technology, Division of the Humanities and Social Sciences.
  12. repec:hal:journl:halshs-00086021 is not listed on IDEAS
  13. Daniel Ellsberg, 2000. "Risk, Ambiguity and the Savage Axioms," Levine's Working Paper Archive 7605, David K. Levine.
  14. Epstein, Larry G, 1999. "A Definition of Uncertainty Aversion," Review of Economic Studies, Wiley Blackwell, vol. 66(3), pages 579-608, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00451982. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.