IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-00451982.html
   My bibliography  Save this paper

Attitude toward imprecise information

Author

Listed:
  • Thibault Gajdos

    () (CES - Centre d'économie de la Sorbonne - CNRS - Centre National de la Recherche Scientifique - UP1 - Université Panthéon-Sorbonne)

  • Takashi Hayashi

    () (Department of Economics, University of Texas at Austin - University of Texas at Austin [Austin])

  • Jean-Marc Tallon

    () (CES - Centre d'économie de la Sorbonne - CNRS - Centre National de la Recherche Scientifique - UP1 - Université Panthéon-Sorbonne, PSE - Paris School of Economics)

  • Jean-Christophe Vergnaud

    () (CES - Centre d'économie de la Sorbonne - CNRS - Centre National de la Recherche Scientifique - UP1 - Université Panthéon-Sorbonne)

Abstract

This paper presents an axiomatic model of decision making under uncertainty which incorporates objective but imprecise information. Information is assumed to take the form of a probability-possibility set, that is, a set $P$ of probability measures on the state space. The decision maker is told that the true probability law lies in $P$ and is assumed to rank pairs of the form $(P,f) $ where $f$ is an act mapping states into outcomes. The key representation result delivers maxmin expected utility where the min operator ranges over a set of probability priors --just as in the maxmin expected utility (MEU) representation result of \cite{GILB/SCHM/89}. However, unlike the MEU representation, the representation here also delivers a mapping, $\varphi$, which links the probability-possibility set, describing the available information, to the set of revealed priors. The mapping $\varphi$ is shown to represent the decision maker's attitude to imprecise information: under our axioms, the set of representation priors is constituted as a selection from the probability-possibility set. This allows both expected utility when the selected set is a singleton and extreme pessimism when the selected set is the same as the probability-possibility set, i.e. , $\varphi$ is the identity mapping. We define a notion of comparative imprecision aversion and show it is characterized by inclusion of the sets of revealed probability distributions, irrespective of the utility functions that capture risk attitude. We also identify an explicit attitude toward imprecision that underlies usual hedging axioms. Finally, we characterize, under extra axioms, a more specific functional form, in which the set of selected probability distributions is obtained by (i) solving for the ``mean value'' of the probability-possibility set, and (ii) shrinking the probability-possibility set toward the mean value to a degree determined by preferences.

Suggested Citation

  • Thibault Gajdos & Takashi Hayashi & Jean-Marc Tallon & Jean-Christophe Vergnaud, 2008. "Attitude toward imprecise information," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00451982, HAL.
  • Handle: RePEc:hal:cesptp:halshs-00451982
    DOI: 10.1016/j.jet.2007.09.002
    Note: View the original document on HAL open archive server: https://halshs.archives-ouvertes.fr/halshs-00451982
    as

    Download full text from publisher

    File URL: https://halshs.archives-ouvertes.fr/halshs-00451982/document
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gajdos, Thibault & Tallon, Jean-Marc & Vergnaud, Jean-Christophe, 2004. "Decision making with imprecise probabilistic information," Journal of Mathematical Economics, Elsevier, vol. 40(6), pages 647-681, September.
    2. Tapking, Jens, 2004. "Axioms for preferences revealing subjective uncertainty and uncertainty aversion," Journal of Mathematical Economics, Elsevier, vol. 40(7), pages 771-797, November.
    3. Daniel Ellsberg, 2000. "Risk, Ambiguity and the Savage Axioms," Levine's Working Paper Archive 7605, David K. Levine.
    4. Sujoy Mukerji & Jean-Marc Tallon, 2001. "Ambiguity Aversion and Incompleteness of Financial Markets," Review of Economic Studies, Oxford University Press, vol. 68(4), pages 883-904.
    5. F J Anscombe & R J Aumann, 2000. "A Definition of Subjective Probability," Levine's Working Paper Archive 7591, David K. Levine.
    6. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    7. Larry G. Epstein, 1999. "A Definition of Uncertainty Aversion," Review of Economic Studies, Oxford University Press, vol. 66(3), pages 579-608.
    8. Daniel Ellsberg, 1961. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, Oxford University Press, vol. 75(4), pages 643-669.
    9. Peter Klibanoff & Massimo Marinacci & Sujoy Mukerji, 2005. "A Smooth Model of Decision Making under Ambiguity," Econometrica, Econometric Society, vol. 73(6), pages 1849-1892, November.
    10. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2006. "Ambiguity Aversion, Robustness, and the Variational Representation of Preferences," Econometrica, Econometric Society, vol. 74(6), pages 1447-1498, November.
    11. Ghirardato, Paolo & Marinacci, M., 1997. "Ambiguity Made Precise: A Comparative Foundation and Some Implications," Working Papers 1026, California Institute of Technology, Division of the Humanities and Social Sciences.
    12. Epstein, Larry G & Wang, Tan, 1994. "Intertemporal Asset Pricing Under Knightian Uncertainty," Econometrica, Econometric Society, vol. 62(2), pages 283-322, March.
    13. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    14. Chateauneuf, Alain & Jaffray, Jean-Yves, 1989. "Some characterizations of lower probabilities and other monotone capacities through the use of Mobius inversion," Mathematical Social Sciences, Elsevier, vol. 17(3), pages 263-283, June.
    15. Wojciech Olszewski, 2007. "Preferences Over Sets of Lotteries -super-1," Review of Economic Studies, Oxford University Press, vol. 74(2), pages 567-595.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Imprecise information; imprecision aversion; multiple priors; Steiner point;

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00451982. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.