IDEAS home Printed from https://ideas.repec.org/p/gmf/wpaper/2014-25..html
   My bibliography  Save this paper

Portfolio Choice under Parameter Uncertainty: Bayesian Analysis and Robust Optimization Comparison

Author

Listed:
  • António Alberto Santos

    (Faculty of Economics, University of Coimbra and GEMF, Portugal)

  • Ana Margarida Monteiro

    (Faculty of Economics, University of Coimbra and GEMF, Portugal)

  • Rui Pascoal

    (Faculty of Economics, University of Coimbra, Portugal)

Abstract

Parameter uncertainty has been a recurrent subject treated in the financial literature. The normative portfolio selection approach considers two main kinds of decision rules: expected expected utility maximization and mean-variance criterion. Assuming that the mean-variance criterion is a good approximation to the expected utility maximization paradigm, a major factor of concern is parameter uncertainty which, when it is not taken into account, can lead to meaningless portfolios. A statistical approach, based on a Bayesian analysis, can be applied to parameter uncertainty. This can be compared with a robust optimization approach where it is assumed that the value of the unknown parameters can change within a given region. Comparisons over these two approaches are performed in this paper. We consider two measures to quantify the effects of the estimation risk, one of the measures is new and extends an existing one. The results allows us to distinguish the approaches and select the one that implies lower mean losses.

Suggested Citation

  • António Alberto Santos & Ana Margarida Monteiro & Rui Pascoal, 2014. "Portfolio Choice under Parameter Uncertainty: Bayesian Analysis and Robust Optimization Comparison," GEMF Working Papers 2014-25, GEMF, Faculty of Economics, University of Coimbra.
  • Handle: RePEc:gmf:wpaper:2014-25.
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. R.H. Tütüncü & M. Koenig, 2004. "Robust Asset Allocation," Annals of Operations Research, Springer, vol. 132(1), pages 157-187, November.
    2. Frank Lutgens & Jos Sturm & Antoon Kolen, 2006. "Robust One-Period Option Hedging," Operations Research, INFORMS, vol. 54(6), pages 1051-1062, December.
    3. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 279-292, September.
    4. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    5. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    6. Sebastián Ceria & Robert A Stubbs, 2006. "Incorporating estimation errors into portfolio selection: Robust portfolio construction," Journal of Asset Management, Palgrave Macmillan, vol. 7(2), pages 109-127, July.
    7. Pulley, Lawrence B., 1981. "A General Mean-Variance Approximation to Expected Utility for Short Holding Periods," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 16(3), pages 361-373, September.
    8. Kai Ye & Panos Parpas & Berç Rustem, 2012. "Robust portfolio optimization: a conic programming approach," Computational Optimization and Applications, Springer, vol. 52(2), pages 463-481, June.
    9. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    10. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 293-305, September.
    11. Gregory, Christine & Darby-Dowman, Ken & Mitra, Gautam, 2011. "Robust optimization and portfolio selection: The cost of robustness," European Journal of Operational Research, Elsevier, vol. 212(2), pages 417-428, July.
    12. Kroll, Yoram & Levy, Haim & Markowitz, Harry M, 1984. "Mean-Variance versus Direct Utility Maximization," Journal of Finance, American Finance Association, vol. 39(1), pages 47-61, March.
    13. Markowitz, Harry M, 1991. "Foundations of Portfolio Theory," Journal of Finance, American Finance Association, vol. 46(2), pages 469-477, June.
    14. Levy, H & Markowtiz, H M, 1979. "Approximating Expected Utility by a Function of Mean and Variance," American Economic Review, American Economic Association, vol. 69(3), pages 308-317, June.
    15. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    2. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    3. Simaan, Majeed & Simaan, Yusif & Tang, Yi, 2018. "Estimation error in mean returns and the mean-variance efficient frontier," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 109-124.
    4. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    5. Kellerer, Belinda, 2019. "Portfolio Optimization and Ambiguity Aversion," Junior Management Science (JUMS), Junior Management Science e. V., vol. 4(3), pages 305-338.
    6. Levy, Haim & Levy, Moshe, 2014. "The benefits of differential variance-based constraints in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 372-381.
    7. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    8. Fernandes, Betina & Street, Alexandre & Valladão, Davi & Fernandes, Cristiano, 2016. "An adaptive robust portfolio optimization model with loss constraints based on data-driven polyhedral uncertainty sets," European Journal of Operational Research, Elsevier, vol. 255(3), pages 961-970.
    9. Fliege, Jörg & Werner, Ralf, 2014. "Robust multiobjective optimization & applications in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 422-433.
    10. Vaughn Gambeta & Roy Kwon, 2020. "Risk Return Trade-Off in Relaxed Risk Parity Portfolio Optimization," JRFM, MDPI, vol. 13(10), pages 1-28, October.
    11. David Moreno & Paulina Marco & Ignacio Olmeda, 2005. "Risk forecasting models and optimal portfolio selection," Applied Economics, Taylor & Francis Journals, vol. 37(11), pages 1267-1281.
    12. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    13. Erindi Allaj, 2020. "The Black–Litterman model and views from a reverse optimization procedure: an out-of-sample performance evaluation," Computational Management Science, Springer, vol. 17(3), pages 465-492, October.
    14. Katrin Schöttle & Ralf Werner & Rudi Zagst, 2010. "Comparison and robustification of Bayes and Black-Litterman models," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(3), pages 453-475, June.
    15. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    16. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.
    17. Selim Mankaï, 2014. "Data-Driven Robust Optimization with Application to Portfolio Management," Working Papers 2014-104, Department of Research, Ipag Business School.
    18. André Alves Portela Santos, 2010. "The Out-of-Sample Performance of Robust Portfolio Optimization," Brazilian Review of Finance, Brazilian Society of Finance, vol. 8(2), pages 141-166.
    19. repec:ipg:wpaper:2014-394 is not listed on IDEAS
    20. Selim Mankaï & Khaled Guesmi, 2015. "Robust Portfolio Protection: A Scenarios-based Approach," Bankers, Markets & Investors, ESKA Publishing, issue 138, pages 30-44, September.
    21. Selim Mankai & Khaled Guesmi, 2014. "Robust Portfolio Protection: A Scenarios-Based Approach," Working Papers hal-04141326, HAL.

    More about this item

    Keywords

    portfolio choice; Bayesian statistics; robust optimization; conic programming; semidefinite programming; loss distribution.;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gmf:wpaper:2014-25.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sofia Antunes (email available below). General contact details of provider: https://edirc.repec.org/data/cebucpt.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.