IDEAS home Printed from https://ideas.repec.org/p/gat/wpaper/0614.html
   My bibliography  Save this paper

Long-term capacity adequacy in electricity markets: Reliability contracts VS Capacity obligations

Author

Listed:
  • Mohamed Haikel Khalfallah

    (GATE CNRS)

Abstract

In this paper, we study the problem of long-term capacity adequacy in electricity markets. Two investment incentive mechanisms, Capacity obligations and Reliability contracts, are analyzed and compared to the benchmark design, the energy-only market. We use the dynamic programming method and real option theory to develop two dynamic models that enable one to assess the optimal market design for ensuring sufficient generation capacity to meet future demand at efficient cost (the deterministic model) and to analyze the optimal timing of investments when uncertainties in future load and fuel prices are considered (the stochastic model). The effects of different factors on investment strategies, such as the pricing of CO2 and differences between construction delays and cost structures of the new technologies, are also analyzed. The numerical results show that: (1) the reliability contract scheme would be the more cost-efficient mechanism, ensuring the long term system adequacy and encouraging earlier and adequate new investments in the system, compared to the capacity obligation method which would result in over-investment and price manipulations; (2) short lead time technology would be preferred with the capacity obligation design, while cost competitive technology would be chosen with the reliability contract scheme; (3) the pricing of CO2 and the taking into account of uncertainties would affect investment strategies but would have no impact on the effectiveness of the reliability contracts scheme.

Suggested Citation

  • Mohamed Haikel Khalfallah, 2006. "Long-term capacity adequacy in electricity markets: Reliability contracts VS Capacity obligations," Working Papers 0614, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
  • Handle: RePEc:gat:wpaper:0614
    as

    Download full text from publisher

    File URL: ftp://ftp.gate.cnrs.fr/RePEc/2006/0614.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    2. Ford, Andrew, 1999. "Cycles in competitive electricity markets: a simulation study of the western United States," Energy Policy, Elsevier, vol. 27(11), pages 637-658, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arango, Santiago, 2007. "Simulation of alternative regulations in the Colombian electricity market," Socio-Economic Planning Sciences, Elsevier, vol. 41(4), pages 305-319, December.
    2. Rios, Daniel & Blanco, Gerardo & Olsina, Fernando, 2019. "Integrating Real Options Analysis with long-term electricity market models," Energy Economics, Elsevier, vol. 80(C), pages 188-205.
    3. Fabien A. Roques & William J. Nuttall & David M. Newbery & Richard de Neufville & Stephen Connors, 2006. "Nuclear Power: A Hedge against Uncertain Gas and Carbon Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 1-24.
    4. Gollier, Christian & Proult, David & Thais, Francoise & Walgenwitz, Gilles, 2005. "Choice of nuclear power investments under price uncertainty: Valuing modularity," Energy Economics, Elsevier, vol. 27(4), pages 667-685, July.
    5. Rios-Festner, Daniel & Blanco, Gerardo & Olsina, Fernando, 2020. "Long-term assessment of power capacity incentives by modeling generation investment dynamics under irreversibility and uncertainty," Energy Policy, Elsevier, vol. 137(C).
    6. Assili, Mohsen & Javidi D.B., M. Hossein & Ghazi, Reza, 2008. "An improved mechanism for capacity payment based on system dynamics modeling for investment planning in competitive electricity environment," Energy Policy, Elsevier, vol. 36(10), pages 3703-3713, October.
    7. Hary, Nicolas & Rious, Vincent & Saguan, Marcelo, 2016. "The electricity generation adequacy problem: Assessing dynamic effects of capacity remuneration mechanisms," Energy Policy, Elsevier, vol. 91(C), pages 113-127.
    8. Oscar Gutiérrez & Francisco Ruiz-Aliseda, 2011. "Real options with unknown-date events," Annals of Finance, Springer, vol. 7(2), pages 171-198, May.
    9. Arve, Malin & Zwart, Gijsbert, 2023. "Optimal procurement and investment in new technologies under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 147(C).
    10. Marks, Phillipa & Marks, Brian, 2007. "Spectrum Allocation, Spectrum Commons and Public Goods: the Role of the Market," MPRA Paper 6785, University Library of Munich, Germany.
    11. Pierre‐Richard Agénor, 2004. "Macroeconomic Adjustment and the Poor: Analytical Issues and Cross‐Country Evidence," Journal of Economic Surveys, Wiley Blackwell, vol. 18(3), pages 351-408, July.
    12. Atal, Vidya & Bar, Talia & Gordon, Sidartha, 2016. "Project selection: Commitment and competition," Games and Economic Behavior, Elsevier, vol. 96(C), pages 30-48.
    13. Prelipcean, Gabriela & Boscoianu, Mircea, 2019. "Aspect Regarding the Design of Active Strategies for Venture Capital Financing – the Flexible Adjustment for Romania as a Frontier Capital Market," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2019), Rovinj, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Rovinj, Croatia, 12-14 September 2019, pages 187-196, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
    14. Waters, James, 2015. "Optimal design and consequences of financial disclosure regulation: a real options approach," MPRA Paper 63369, University Library of Munich, Germany.
    15. Golub, Alexander (Голуб, Александр), 2018. "Methodological Issues of Assessing Investment Risks in Projects Weakening the Dependence of the Russian Economy on Natural Resources and Providing a Transition to Low-Carbon Development [Методологи," Working Papers 071802, Russian Presidential Academy of National Economy and Public Administration.
    16. Suleyman Basak & Georgy Chabakauri, 2012. "Dynamic Hedging in Incomplete Markets: A Simple Solution," The Review of Financial Studies, Society for Financial Studies, vol. 25(6), pages 1845-1896.
    17. Casper Agaton, 2017. "Coal, Renewable, or Nuclear? A Real Options Approach to Energy Investments in the Philippines," International Journal of Sustainable Energy and Environmental Research, Conscientia Beam, vol. 6(2), pages 50-62.
    18. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    19. Jaewon Jung, 2023. "Multinational Firms and Economic Integration: The Role of Global Uncertainty," Sustainability, MDPI, vol. 15(3), pages 1-18, February.
    20. Alvarez, Luis H. R., 1998. "Exit strategies and price uncertainty: a Greenian approach," Journal of Mathematical Economics, Elsevier, vol. 29(1), pages 43-56, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • O21 - Economic Development, Innovation, Technological Change, and Growth - - Development Planning and Policy - - - Planning Models; Planning Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gat:wpaper:0614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nelly Wirth The email address of this maintainer does not seem to be valid anymore. Please ask Nelly Wirth to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/gateefr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.