IDEAS home Printed from https://ideas.repec.org/p/fip/fedgif/981.html
   My bibliography  Save this paper

Characteristic-based mean-variance portfolio choice

Author

Abstract

We study empirical mean-variance optimization when the portfolio weights are restricted to be direct functions of underlying stock characteristics such as value and momentum. The closed-form solution to the portfolio weights estimator shows that the portfolio problem in this case reduces to a mean-variance analysis of assets with returns given by single-characteristic strategies (e.g., momentum or value). In an empirical application to international stock return indexes, we show that the direct approach to estimating portfolio weights clearly beats a naive regression-based approach that models the conditional mean. However, a portfolio based on equal weights of the single-characteristic strategies performs about as well, and sometimes better, than the direct estimation approach, highlighting again the difficulties in beating the equal-weighted case in mean-variance analysis. The empirical results also highlight the potential for `stock-picking' in international indexes, using characteristics such as value and momentum, with the characteristic-based portfolios obtaining Sharpe ratios approximately three times larger than the world market.

Suggested Citation

  • Erik Hjalmarsson & Peter Manchev, 2009. "Characteristic-based mean-variance portfolio choice," International Finance Discussion Papers 981, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgif:981
    as

    Download full text from publisher

    File URL: http://www.federalreserve.gov/pubs/ifdp/2009/981/default.htm
    Download Restriction: no

    File URL: http://www.federalreserve.gov/pubs/ifdp/2009/981/ifdp981.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    2. Tu, Jun & Zhou, Guofu, 2011. "Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies," Journal of Financial Economics, Elsevier, vol. 99(1), pages 204-215, January.
    3. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    4. DeMiguel, Victor & Plyakha, Yuliya & Uppal, Raman & Vilkov, Grigory, 2013. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(6), pages 1813-1845, December.
    5. Michael W. Brandt, 1999. "Estimating Portfolio and Consumption Choice: A Conditional Euler Equations Approach," Journal of Finance, American Finance Association, vol. 54(5), pages 1609-1645, October.
    6. Yacine AÏT‐SAHALI & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
    7. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    8. Michael W. Brandt & Pedro Santa-Clara & Rossen Valkanov, 2009. "Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3411-3447, September.
    9. Jegadeesh, Narasimhan, 1990. "Evidence of Predictable Behavior of Security Returns," Journal of Finance, American Finance Association, vol. 45(3), pages 881-898, July.
    10. Lo, Andrew W & MacKinlay, A Craig, 1990. "When Are Contrarian Profits Due to Stock Market Overreaction?," The Review of Financial Studies, Society for Financial Studies, vol. 3(2), pages 175-205.
    11. Pflug, Georg Ch. & Pichler, Alois & Wozabal, David, 2012. "The 1/N investment strategy is optimal under high model ambiguity," Journal of Banking & Finance, Elsevier, vol. 36(2), pages 410-417.
    12. Michael W. Brandt & Pedro Santa‐Clara, 2006. "Dynamic Portfolio Selection by Augmenting the Asset Space," Journal of Finance, American Finance Association, vol. 61(5), pages 2187-2217, October.
    13. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    14. Hjalmarsson, Erik, 2010. "Predicting Global Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(1), pages 49-80, February.
    15. Janet L. Yellen, 2011. "Unconventional monetary policy and central bank communications : a speech at the University of Chicago Booth School of Business U.S. Monetary Policy Forum, New York, New York, February 25, 2011," Speech 604, Board of Governors of the Federal Reserve System (U.S.).
    16. Avanidhar Subrahmanyam, 2010. "The Cross†Section of Expected Stock Returns: What Have We Learnt from the Past Twenty†Five Years of Research?," European Financial Management, European Financial Management Association, vol. 16(1), pages 27-42, January.
    17. Patro, Dilip K. & Wu, Yangru, 2004. "Predictability of short-horizon returns in international equity markets," Journal of Empirical Finance, Elsevier, vol. 11(4), pages 553-584, September.
    18. Mark Britten‐Jones, 1999. "The Sampling Error in Estimates of Mean‐Variance Efficient Portfolio Weights," Journal of Finance, American Finance Association, vol. 54(2), pages 655-671, April.
    19. Alberto Plazzi & Walter N. Torous & Rossen I. Valkanov, 2011. "Exploiting Property Characteristics in Commercial Real Estate Portfolio Allocation," Swiss Finance Institute Research Paper Series 11-07, Swiss Finance Institute.
    20. Jegadeesh, Narasimhan & Titman, Sheridan, 1995. "Overreaction, Delayed Reaction, and Contrarian Profits," The Review of Financial Studies, Society for Financial Studies, vol. 8(4), pages 973-993.
    21. Fama, Eugene F & French, Kenneth R, 1996. "Multifactor Explanations of Asset Pricing Anomalies," Journal of Finance, American Finance Association, vol. 51(1), pages 55-84, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Qifa & Li, Mengting & Jiang, Cuixia, 2021. "Network-augmented time-varying parametric portfolio selection: Evidence from the Chinese stock market," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    2. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Working Papers 202111, Geary Institute, University College Dublin.
    3. Chia, Rui Ming Daryl & Lim, Kai Jie Shawn, 2012. "The Attenuation of Idiosyncratic Risk under Alternative Portfolio Weighting Strategies: Recent Evidence from the UK Equity Market," MPRA Paper 41455, University Library of Munich, Germany.
    4. Ammann, Manuel & Coqueret, Guillaume & Schade, Jan-Philip, 2016. "Characteristics-based portfolio choice with leverage constraints," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 23-37.
    5. Ni, Xuanming & Zheng, Tiantian & Zhao, Huimin & Zhu, Shushang, 2023. "High-dimensional portfolio optimization based on tree-structured factor model," Pacific-Basin Finance Journal, Elsevier, vol. 81(C).
    6. Xia, Hui & Min, Xinyu & Deng, Shijie, 2015. "Effectiveness of earnings forecasts in efficient global portfolio construction," International Journal of Forecasting, Elsevier, vol. 31(2), pages 568-574.
    7. Auh, Jun Kyung & Cho, Wonho, 2023. "Factor-based portfolio optimization," Economics Letters, Elsevier, vol. 228(C).
    8. Ge, S. & Li, S. & Linton, O., 2020. "A Dynamic Network of Arbitrage Characteristics," Cambridge Working Papers in Economics 2060, Faculty of Economics, University of Cambridge.
    9. Yong-Jun Liu & Wei-Guo Zhang, 2019. "Possibilistic Moment Models for Multi-period Portfolio Selection with Fuzzy Returns," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1657-1686, April.
    10. Ioannis Branikas & Harrison Hong & Jiangmin Xu, 2017. "Location Choice, Portfolio Choice," NBER Working Papers 23040, National Bureau of Economic Research, Inc.
    11. Guillaume Chevalier & Guillaume Coqueret & Thomas Raffinot, 2022. "Supervised portfolios," Post-Print hal-04144588, HAL.
    12. Ardia, David & Boudt, Kris & Wauters, Marjan, 2016. "The economic benefits of market timing the style allocation of characteristic-based portfolios," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 38-62.
    13. Moura, Guilherme V. & Santos, André A.P. & Ruiz, Esther, 2020. "Comparing high-dimensional conditional covariance matrices: Implications for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 118(C).
    14. Jiang, Chonghui & Du, Jiangze & An, Yunbi & Zhang, Jinqing, 2021. "Factor tracking: A new smart beta strategy that outperforms naïve diversification," Economic Modelling, Elsevier, vol. 96(C), pages 396-408.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laborda, Ricardo & Olmo, Jose, 2017. "Optimal asset allocation for strategic investors," International Journal of Forecasting, Elsevier, vol. 33(4), pages 970-987.
    2. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J. & Uppal, Raman, 2017. "A Portfolio Perspective on the Multitude of Firm Characteristics," CEPR Discussion Papers 12417, C.E.P.R. Discussion Papers.
    3. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    4. Joenväärä, Juha & Kauppila, Mikko & Kahra, Hannu, 2021. "Hedge fund portfolio selection with fund characteristics," Journal of Banking & Finance, Elsevier, vol. 132(C).
    5. Immo Stadtmüller & Benjamin R. Auer & Frank Schuhmacher, 2024. "Core-satellite investing with commodity futures momentum," Journal of Asset Management, Palgrave Macmillan, vol. 25(3), pages 261-287, May.
    6. Ammann, Manuel & Coqueret, Guillaume & Schade, Jan-Philip, 2016. "Characteristics-based portfolio choice with leverage constraints," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 23-37.
    7. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    8. Han, Chulwoo, 2020. "A nonparametric approach to portfolio shrinkage," Journal of Banking & Finance, Elsevier, vol. 120(C).
    9. Behr, Patrick & Guettler, Andre & Truebenbach, Fabian, 2012. "Using industry momentum to improve portfolio performance," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1414-1423.
    10. Füss, Roland & Miebs, Felix & Trübenbach, Fabian, 2014. "A jackknife-type estimator for portfolio revision," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 14-28.
    11. Hautsch, Nikolaus & Voigt, Stefan, 2019. "Large-scale portfolio allocation under transaction costs and model uncertainty," Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
    12. Michael Curran & Patrick O'Sullivan & Ryan Zalla, 2020. "Can Volatility Solve the Naive Portfolio Puzzle?," Papers 2005.03204, arXiv.org, revised Feb 2022.
    13. Firoozye, Nikan & Tan, Vincent & Zohren, Stefan, 2023. "Canonical portfolios: Optimal asset and signal combination," Journal of Banking & Finance, Elsevier, vol. 154(C).
    14. Ni, Xuanming & Zheng, Tiantian & Zhao, Huimin & Zhu, Shushang, 2023. "High-dimensional portfolio optimization based on tree-structured factor model," Pacific-Basin Finance Journal, Elsevier, vol. 81(C).
    15. Yan, Cheng & Zhang, Huazhu, 2017. "Mean-variance versus naïve diversification: The role of mispricing," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 61-81.
    16. Allen, David & Lizieri, Colin & Satchell, Stephen, 2020. "A comparison of non-Gaussian VaR estimation and portfolio construction techniques," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 356-368.
    17. Hollstein, Fabian & Nguyen, Duc Binh Benno & Prokopczuk, Marcel, 2019. "Asset prices and “the devil(s) you know”," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 20-35.
    18. Tu, Jun & Zhou, Guofu, 2010. "Incorporating Economic Objectives into Bayesian Priors: Portfolio Choice under Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(4), pages 959-986, August.
    19. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    20. Behr, Patrick & Guettler, Andre & Miebs, Felix, 2013. "On portfolio optimization: Imposing the right constraints," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1232-1242.

    More about this item

    Keywords

    Portfolio management;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgif:981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.