IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2025-44.html
   My bibliography  Save this paper

Total Recall? Evaluating the Macroeconomic Knowledge of Large Language Models

Author

Abstract

We evaluate the ability of large language models (LLMs) to estimate historical macroeconomic variables and data release dates. We find that LLMs have precise knowledge of some recent statistics, but performance degrades as we go farther back in history. We highlight two particularly important kinds of recall errors: mixing together first print data with subsequent revisions (i.e., smoothing across vintages) and mixing data for past and future reference periods (i.e., smoothing within vintages). We also find that LLMs can often recall individual data release dates accurately, but aggregating across series shows that on any given day the LLM is likely to believe it has data in hand which has not been released. Our results indicate that while LLMs have impressively accurate recall, their errors point to some limitations when used for historical analysis or to mimic real time forecasters.

Suggested Citation

  • Leland D. Crane & Akhil Karra & Paul E. Soto, 2025. "Total Recall? Evaluating the Macroeconomic Knowledge of Large Language Models," Finance and Economics Discussion Series 2025-044, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:2025-44
    DOI: 10.17016/FEDS.2025.044
    as

    Download full text from publisher

    File URL: https://www.federalreserve.gov/econres/feds/files/2025044pap.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.17016/FEDS.2025.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    Artificial intelligence; Forecasting; Large language models; Real-time data;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2025-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.