IDEAS home Printed from https://ideas.repec.org/p/eti/dpaper/17056.html
   My bibliography  Save this paper

Measuring Science Intensity of Industry using Linked Dataset of Science, Technology and Industry

Author

Listed:
  • IKEUCHI Kenta
  • MOTOHASHI Kazuyuki
  • TAMURA Ryuichi
  • TSUKADA Naotoshi

Abstract

This paper presents new indicators measuring the science intensity of industry in Japan, linking a scientific paper database (science), patent information (technology), and economic census data (industry). The new indicators reflect the interaction between science and industry, via academic patenting activities, which cannot be measured by an existing indicator of science linkage: non-patent literature (NPL) citations by patents. As the academic sector gets more involved in patenting activities, its scientific knowledge is being utilized by industries that are not categorized as science-based. Additionally, it was revealed that scientific knowledge has been increasingly used for industrial innovation over the last 10 years across all academic disciplines. Our study reiterates that public support of science is essential for industrial innovation.

Suggested Citation

  • IKEUCHI Kenta & MOTOHASHI Kazuyuki & TAMURA Ryuichi & TSUKADA Naotoshi, 2017. "Measuring Science Intensity of Industry using Linked Dataset of Science, Technology and Industry," Discussion papers 17056, Research Institute of Economy, Trade and Industry (RIETI).
  • Handle: RePEc:eti:dpaper:17056
    as

    Download full text from publisher

    File URL: https://www.rieti.go.jp/jp/publications/dp/17e056.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lissoni, Francesco & Montobbio, Fabio & Zirulia, Lorenzo, 2013. "Inventorship and authorship as attribution rights: An enquiry into the economics of scientific credit," Journal of Economic Behavior & Organization, Elsevier, vol. 95(C), pages 49-69.
    2. Murray, Fiona, 2002. "Innovation as co-evolution of scientific and technological networks: exploring tissue engineering," Research Policy, Elsevier, vol. 31(8-9), pages 1389-1403, December.
    3. Goto, Akira & Motohashi, Kazuyuki, 2007. "Construction of a Japanese Patent Database and a first look at Japanese patenting activities," Research Policy, Elsevier, vol. 36(9), pages 1431-1442, November.
    4. Motohashi, Kazuyuki & Muramatsu, Shingo, 2012. "Examining the university industry collaboration policy in Japan: Patent analysis," Technology in Society, Elsevier, vol. 34(2), pages 149-162.
    5. Magerman, Tom & Looy, Bart Van & Debackere, Koenraad, 2015. "Does involvement in patenting jeopardize one’s academic footprint? An analysis of patent-paper pairs in biotechnology," Research Policy, Elsevier, vol. 44(9), pages 1702-1713.
    6. Bart Van Looy & Edwin Zimmermann & Reinhilde Veugelers & Arnold Verbeek & Johanna Mello & Koenraad Debackere, 2003. "Do science-technology interactions pay off when developing technology?," Scientometrics, Springer;Akadémiai Kiadó, vol. 57(3), pages 355-367, July.
    7. Schumpeter Tamada & Yusuke Naito & Fumio Kodama & Kiminori Gemba & Jun Suzuki, 2006. "Significant difference of dependence upon scientific knowledge among different technologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(2), pages 289-302, August.
    8. Vetle I. Torvik & Marc Weeber & Don R. Swanson & Neil R. Smalheiser, 2005. "A probabilistic similarity metric for Medline records: A model for author name disambiguation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 56(2), pages 140-158, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ernest Miguelez & Julio Raffo & Christian Chacua & Massimiliano Coda-Zabetta & Deyun Yin & Francesco Lissoni & Gianluca Tarasconi, 2019. "Tied In: The Global Network of Local Innovation," WIPO Economic Research Working Papers 58, World Intellectual Property Organization - Economics and Statistics Division.
    2. Yasushi Hara & Akiyuki Tonogi & Konomi Tonogi, 2019. "Impact of R&D Activities on Pricing Behaviors with Product Turnover," Working Papers hal-02318466, HAL.
    3. Motohashi, Kazuyuki & Zhu, Chen, 2023. "Identifying technology opportunity using dual-attention model and technology-market concordance matrix," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    4. Ito, Keiko & Ikeuchi, Kenta & Criscuolo, Chiara & Timmis, Jonathan & Bergeaud, Antonin, 2023. "Global value chains and domestic innovation," Research Policy, Elsevier, vol. 52(3).
    5. YIN Deyun & MOTOHASHI Kazuyuki, 2018. "Inventor Name Disambiguation with Gradient Boosting Decision Tree and Inventor Mobility in China (1985-2016)," Discussion papers 18018, Research Institute of Economy, Trade and Industry (RIETI).
    6. Deyun Yin & Kazuyuki Motohashi & Jianwei Dang, 2020. "Large-scale name disambiguation of Chinese patent inventors (1985–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 765-790, February.
    7. MOTOHASHI Kazuyuki & KOSHIBA Hitoshi & IKEUCHI Kenta, 2021. "New Indicator of Science and Technology Inter-Relationship by Using Text Information of Research Articles and Patents in Japan," Discussion papers 21025, Research Institute of Economy, Trade and Industry (RIETI).
    8. HARA Yasushi & TONOGI Akiyuki & TONOGI Konomi, 2020. "Impact of R&D Activities on Pricing Behaviors with Product Turnover," Discussion papers 20006, Research Institute of Economy, Trade and Industry (RIETI).
    9. Byeongwoo Kang & Kazuyuki Motohashi, 2020. "Academic contribution to industrial innovation by funding type," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 169-193, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nobuya Fukugawa, 2016. "Knowledge creation and dissemination by Kosetsushi in sectoral innovation systems: insights from patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 2303-2327, December.
    2. Huang, Mu-Hsuan & Huang, Wei-Tzu & Chen, Dar-Zen, 2014. "Technological impact factor: An indicator to measure the impact of academic publications on practical innovation," Journal of Informetrics, Elsevier, vol. 8(1), pages 241-251.
    3. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    4. Byeongwoo Kang & Kazuyuki Motohashi, 2020. "Academic contribution to industrial innovation by funding type," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 169-193, July.
    5. Chihmao Hsieh, 2011. "Explicitly searching for useful inventions: dynamic relatedness and the costs of connecting versus synthesizing," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(2), pages 381-404, February.
    6. MOTOHASHI Kazuyuki & TOMOZAWA Takanori, 2014. "Differences in Science Based Innovation by Technology Life Cycles: The case of solar cell technology," Discussion papers 14005, Research Institute of Economy, Trade and Industry (RIETI).
    7. FUKUGAWA Nobuya, 2016. "Knowledge Creation and Dissemination by Local Public Technology Centers in Regional and Sectoral Innovation Systems: Insights from patent data," Discussion papers 16061, Research Institute of Economy, Trade and Industry (RIETI).
    8. Popp, David, 2017. "From science to technology: The value of knowledge from different energy research institutions," Research Policy, Elsevier, vol. 46(9), pages 1580-1594.
    9. Fujii, Hidemichi & Managi, Shunsuke, 2016. "Research and development strategy for environmental technology in Japan: A comparative study of the private and public sectors," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 293-302.
    10. Hottenrott, Hanna & Lawson, Cornelia, 2017. "Fishing for complementarities: Research grants and research productivity," International Journal of Industrial Organization, Elsevier, vol. 51(C), pages 1-38.
    11. Alfonso Ávila-Robinson & Shintaro Sengoku, 2017. "Tracing the knowledge-building dynamics in new stem cell technologies through techno-scientific networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1691-1720, September.
    12. Nagaoka, Sadao & Motohashi, Kazuyuki & Goto, Akira, 2010. "Patent Statistics as an Innovation Indicator," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1083-1127, Elsevier.
    13. Suma Athreye & Martha Prevezer, 2008. "R&D offshoring and the domestic science base in India and China," Working Papers 26, Queen Mary, University of London, School of Business and Management, Centre for Globalisation Research.
    14. Hiroyasu Inoue & Eiichi Yamaguchi, 2017. "Evaluation of the Small Business Innovation Research Program in Japan," SAGE Open, , vol. 7(1), pages 21582440176, February.
    15. Lai, Kuei-Kuei & Chen, Yu-Long & Kumar, Vimal & Daim, Tugrul & Verma, Pratima & Kao, Fang-Chen & Liu, Ruirong, 2023. "Mapping technological trajectories and exploring knowledge sources: A case study of E-payment technologies," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    16. Pandza, Krsto & Ellwood, Paul, 2013. "Strategic and ethical foundations for responsible innovation," Research Policy, Elsevier, vol. 42(5), pages 1112-1125.
    17. Hoekman, Jarno & Rake, Bastian, 2024. "Geography of authorship: How geography shapes authorship attribution in big team science," Research Policy, Elsevier, vol. 53(2).
    18. Krzysztof Klincewicz & Szymon Szumiał, 2022. "Successful patenting—not only how, but with whom: the importance of patent attorneys," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5111-5137, September.
    19. Joshua S Gans & Fiona Murray, 2023. "Markets for Scientific Attribution," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 39(3), pages 828-846.
    20. KANG Byeongwoo & MOTOHASHI Kazuyuki, 2020. "Local Industry Influence on Commercialization of University Research by University Startups," Discussion papers 20086, Research Institute of Economy, Trade and Industry (RIETI).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eti:dpaper:17056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: TANIMOTO, Toko (email available below). General contact details of provider: https://edirc.repec.org/data/rietijp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.