IDEAS home Printed from https://ideas.repec.org/p/eti/dpaper/17020.html
   My bibliography  Save this paper

Inefficiency in Rice Production and Land Use: A panel study of Japanese rice farmers

Author

Listed:
  • OGAWA Kazuo

Abstract

In this study, an empirical analysis was conducted on the behavior of Japanese rice producers from the standpoint of efficiency in production by using panel data from the Rice Production Cost Statistics by the Ministry of Agriculture, Forestry and Fisheries. The stochastic frontier production function, which comprises four production factors (land, labor, capital stock, and materials), was estimated and the inefficiency indices of production were calculated. Based on this information, the efficient and inefficient rice producers were identified, and the factor demand behavior and characteristics of the arable land utilization for rice production were compared. It was found that inefficient rice producers do not make any adjustments in employment in the short or long run, even if there is a change in the wages. In addition, it was observed that efficient rice producers who hold a large amount of the farms partitioned into small plots reduced the arable land utilization for rice production and increased productivity. However, it was noted that the certified farmers, who should be aiming at an expansion of the scale of operation and efficiency of agricultural operations, tend to reduce arable land utilization for rice cultivation and switch to other crops; moreover, the more efficient the certified farmers are, the larger are the effects of such activities.

Suggested Citation

  • OGAWA Kazuo, 2017. "Inefficiency in Rice Production and Land Use: A panel study of Japanese rice farmers," Discussion papers 17020, Research Institute of Economy, Trade and Industry (RIETI).
  • Handle: RePEc:eti:dpaper:17020
    as

    Download full text from publisher

    File URL: https://www.rieti.go.jp/jp/publications/dp/17e020.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Kawasaki, Kentaro, 2010. "The costs and benefits of land fragmentation of rice farms in Japan," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 1-18.
    2. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    3. Kentaro Kawasaki, 2010. "The costs and benefits of land fragmentation of rice farms in Japan ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 509-526, October.
    4. Hayami, Yujiro & Kawagoe, Toshihiko, 1989. "Farm mechanization, scale economies and polarization : The Japanese experience," Journal of Development Economics, Elsevier, vol. 31(2), pages 221-239, October.
    5. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    6. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    7. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ogawa, Kazuo, 2017. "Inefficiency in Rice Production and Land Use: A Panel Study of Japanese Rice Farmers," HIT-REFINED Working Paper Series 68, Institute of Economic Research, Hitotsubashi University.
    2. Kazuo Ogawa, 2020. "Inefficiency in rice production and land use: a panel study of Japanese rice farmers," The Japanese Economic Review, Springer, vol. 71(4), pages 641-669, October.
    3. Rao, Xudong, 2014. "Land Fragmentation with Double Bonuses -- The Case of Tanzanian Agriculture," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169436, Agricultural and Applied Economics Association.
    4. Carlos Pestana Barros & Zhongfei Chen & Peter Wanke, 2016. "Efficiency in Chinese seaports: 2002–2012," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 18(3), pages 295-316, September.
    5. B. E. Bravo‐Ureta & L. Rieger, 1990. "Alternative Production Frontier Methodologies And Dairy Farm Efficiency," Journal of Agricultural Economics, Wiley Blackwell, vol. 41(2), pages 215-226, May.
    6. Roberto Colombi & Subal Kumbhakar & Gianmaria Martini & Giorgio Vittadini, 2014. "Closed-skew normality in stochastic frontiers with individual effects and long/short-run efficiency," Journal of Productivity Analysis, Springer, vol. 42(2), pages 123-136, October.
    7. Cazals Catherine & Dudley Paul & Florens Jean-Pierre & Jones Michael, 2011. "The Effect of Unobserved Heterogeneity in Stochastic Frontier Estimation: Comparison of Cross Section and Panel with Simulated Data for the Postal Sector," Review of Network Economics, De Gruyter, vol. 10(3), pages 1-22, September.
    8. Schalk Hans Joachim & Untiedt Gerhard & Lüschow Jörg, 1995. "Technische Effizienz, Wachstum und Konvergenz in den Arbeitsmarktregionen der Bundesrepublik Deutschland (West). Eine ökonometrische Analyse für die Verarbeitende Industrie mit einem „Frontier Product," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 214(1), pages 25-49, February.
    9. Getu Hailu & B. James Deaton, 2016. "Agglomeration Effects in Ontario’s Dairy Farming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(4), pages 1055-1073.
    10. Pantzios, Christos J. & Rozakis, Stelios & Tzouvelekas, Vangelis, 2006. "Evading Farm Support Reduction via Efficient Input Use: The Case of Greek Cotton Growers," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 38(3), pages 555-574, December.
    11. Dhawan, Rajeev & Jochumzen, Peter, 1999. "Stochastic Frontier Production Function With Errors-In-Variables," Working Papers 1999:007, Lund University, Department of Economics.
    12. Christine Amsler & Michael Leonard & Peter Schmidt, 2013. "Estimation and inference in parametric deterministic frontier models," Journal of Productivity Analysis, Springer, vol. 40(3), pages 293-305, December.
    13. Julia Schaefer & Marcel Clermont, 2018. "Stochastic non-smooth envelopment of data for multi-dimensional output," Journal of Productivity Analysis, Springer, vol. 50(3), pages 139-154, December.
    14. Farsi, Mehdi & Filippini, Massimo, 2009. "An analysis of cost efficiency in Swiss multi-utilities," Energy Economics, Elsevier, vol. 31(2), pages 306-315, March.
    15. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    16. Federico Belotti & Giuseppe Ilardi & Andrea Piano Mortari, 2019. "Estimation of Stochastic Frontier Panel Data Models with Spatial Inefficiency," CEIS Research Paper 459, Tor Vergata University, CEIS, revised 30 May 2019.
    17. Glass, Anthony J. & Kenjegalieva, Karligash & Sickles, Robin C. & Weyman-Jones, Thomas, 2018. "The Spatial Efficiency Multiplier and Common Correlated Effects in a Spatial Autoregressive Stochastic Frontier Model," Working Papers 18-003, Rice University, Department of Economics.
    18. Dairo Estrada & Poldy Osorio, 2004. "Effects of Financial Capital on Colombian Banking Efficiency," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 22(47), pages 162-201, December.
    19. Phill Wheat & Alexander D. Stead & William H. Greene, 2019. "Robust stochastic frontier analysis: a Student’s t-half normal model with application to highway maintenance costs in England," Journal of Productivity Analysis, Springer, vol. 51(1), pages 21-38, February.
    20. Evangelia Desli & Subhash Ray & Subal Kumbhakar, 2003. "A dynamic stochastic frontier production model with time-varying efficiency," Applied Economics Letters, Taylor & Francis Journals, vol. 10(10), pages 623-626.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eti:dpaper:17020. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (TANIMOTO, Toko). General contact details of provider: http://edirc.repec.org/data/rietijp.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.