IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Optimizing intersections

Listed author(s):
  • Ruth EVERS
  • Stefan PROOST

In this paper we optimize the regulation of an intersection of two routes connecting one origin-destination pair and study the effects of priority rules, traffic lights and tolls. We show that when the intersection is regulated by a priority rule the optimal policy is generally to block one of the two routes. When the intersection is regulated by traffic lights, it can only be optimal to leave both routes open when both routes are subject to congestion or if a toll is levied.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by KU Leuven, Faculty of Economics and Business, Department of Economics in its series Working Papers Department of Economics with number ces13.17.

in new window

Date of creation: Oct 2013
Handle: RePEc:ete:ceswps:ces13.17
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Cipriani, Ernesto & Fusco, Gaetano, 2004. "Combined signal setting design and traffic assignment problem," European Journal of Operational Research, Elsevier, vol. 155(3), pages 569-583, June.
  2. Yang, Hai & Yagar, Sam, 1995. "Traffic assignment and signal control in saturated road networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(2), pages 125-139, March.
  3. Abu-Lebdeh, Ghassan & Benekohal, Rahim F., 2003. "Design and evaluation of dynamic traffic management strategies for congested conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(2), pages 109-127, February.
  4. M. J. Smith & T. van Vuren, 1993. "Traffic Equilibrium with Responsive Traffic Control," Transportation Science, INFORMS, vol. 27(2), pages 118-132, May.
  5. Smith, M. J., 1979. "The existence, uniqueness and stability of traffic equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 295-304, December.
  6. Smith, M. J., 1981. "Properties of a traffic control policy which ensure the existence of a traffic equilibrium consistent with the policy," Transportation Research Part B: Methodological, Elsevier, vol. 15(6), pages 453-462, December.
  7. Patrice Marcotte, 1983. "Network Optimization with Continuous Control Parameters," Transportation Science, INFORMS, vol. 17(2), pages 181-197, May.
  8. Dickson, Thomas J., 1981. "A note on traffic assignment and signal timings in a signal-controlled road network," Transportation Research Part B: Methodological, Elsevier, vol. 15(4), pages 267-271, August.
  9. Lo, Hong K. & Chang, Elbert & Chan, Yiu Cho, 2001. "Dynamic network traffic control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(8), pages 721-744, September.
  10. De Borger, Bruno & Proost, Stef, 2013. "Traffic externalities in cities: The economics of speed bumps, low emission zones and city bypasses," Journal of Urban Economics, Elsevier, vol. 76(C), pages 53-70.
  11. Suh-Wen Chiou, 1999. "Optimization of Area Traffic Control for Equilibrium Network Flows," Transportation Science, INFORMS, vol. 33(3), pages 279-289, August.
  12. Clegg, Janet & Smith, Mike & Xiang, Yanling & Yarrow, Robert, 2001. "Bilevel programming applied to optimising urban transportation," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 41-70, January.
  13. Gartner, Nathan H. & Gershwin, Stanley B. & Little, John D. C. & Ross, Paul, 1980. "Pilot study of computer-based urban traffic management," Transportation Research Part B: Methodological, Elsevier, vol. 14(1-2), pages 203-217.
  14. Fisk, C. S., 1984. "Game theory and transportation systems modelling," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 301-313.
  15. Yaron Hollander & Joseph Prashker, 2006. "The applicability of non-cooperative game theory in transport analysis," Transportation, Springer, vol. 33(5), pages 481-496, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ete:ceswps:ces13.17. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (library EBIB)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.