IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/103185.html
   My bibliography  Save this paper

An Evaluation of Cross-Efficiency Methods, Applied to Measuring Warehouse Performance

Author

Listed:
  • Balk, B.M.
  • de Koster, M.B.M.
  • Kaps, C.
  • Zofío, J.L.

Abstract

In this paper method and practice of cross-efficiency calculation is discussed. The main methods proposed in the literature are tested not on a set of artificial data but on a realistic sample of input-output data of European ware- houses. The empirical results show the limited role which increasing automation investment and larger warehouse size have in increasing productive performance. The reason is the existence of decreasing returns to scale in the industry, resulting in sub-optimal scales and inefficiencies, regardless of the operational performance of the facilities. From the methodological perspective, and based on a multidimensional metric which considers the capability of the various methods to rank warehouses, their ease of implementation, and their robustness to sensitivity analyses, we conclude to the superiority of the classic Sexton et al. (1986) method over recently proposed, more sophisticated methods.

Suggested Citation

  • Balk, B.M. & de Koster, M.B.M. & Kaps, C. & Zofío, J.L., 2017. "An Evaluation of Cross-Efficiency Methods, Applied to Measuring Warehouse Performance," ERIM Report Series Research in Management ERS-2017-015-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:103185
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/103185/ERS-2017-015-LIS.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Golany, B & Roll, Y, 1989. "An application procedure for DEA," Omega, Elsevier, vol. 17(3), pages 237-250.
    2. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    3. Joe Zhu, 2014. "Quantitative Models for Performance Evaluation and Benchmarking," International Series in Operations Research and Management Science, Springer, edition 3, number 978-3-319-06647-9, March.
    4. Thomas L. Saaty, 1986. "Axiomatic Foundation of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 32(7), pages 841-855, July.
    5. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2010. "On the choice of weights profiles in cross-efficiency evaluations," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1564-1572, December.
    6. Jesús T. Pastor & JosÉ L. Ruiz & Inmaculada Sirvent, 2002. "A Statistical Test for Nested Radial Dea Models," Operations Research, INFORMS, vol. 50(4), pages 728-735, August.
    7. R. Allen & A. Athanassopoulos & R.G. Dyson & E. Thanassoulis, 1997. "Weights restrictions and value judgements in Data Envelopment Analysis: Evolution, development and future directions," Annals of Operations Research, Springer, vol. 73(0), pages 13-34, October.
    8. Chris Tofallis, 2014. "On constructing a composite indicator with multiplicative aggregation and the avoidance of zero weights in DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(5), pages 791-792, May.
    9. Jelle de Vries & René de Koster & Daan Stam, 2016. "Exploring the role of picker personality in predicting picking performance with pick by voice, pick to light and RF-terminal picking," International Journal of Production Research, Taylor & Francis Journals, vol. 54(8), pages 2260-2274, April.
    10. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    11. Hoff, Ayoe, 2007. "Second stage DEA: Comparison of approaches for modelling the DEA score," European Journal of Operational Research, Elsevier, vol. 181(1), pages 425-435, August.
    12. Charnes, A. & Cooper, W. W. & Seiford, L. & Stutz, J., 1982. "A multiplicative model for efficiency analysis," Socio-Economic Planning Sciences, Elsevier, vol. 16(5), pages 223-224.
    13. Liang Liang & Jie Wu & Wade D. Cook & Joe Zhu, 2008. "The DEA Game Cross-Efficiency Model and Its Nash Equilibrium," Operations Research, INFORMS, vol. 56(5), pages 1278-1288, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    2. Juan Aparicio & José L. Zofío, 2020. "New Definitions of Economic Cross-efficiency," International Series in Operations Research & Management Science, in: Juan Aparicio & C. A. Knox Lovell & Jesus T. Pastor & Joe Zhu (ed.), Advances in Efficiency and Productivity II, pages 11-32, Springer.
    3. Yao, Xing & Yasmeen, Rizwana & Hussain, Jamal & Hassan Shah, Wasi Ul, 2021. "The repercussions of financial development and corruption on energy efficiency and ecological footprint: Evidence from BRICS and next 11 countries," Energy, Elsevier, vol. 223(C).
    4. Aparicio, Juan & Zofío, José L., 2021. "Economic cross-efficiency," Omega, Elsevier, vol. 100(C).
      • Aparicio, J. & Zofío, J.L., 2019. "Economic Cross-Efficiency," ERIM Report Series Research in Management ERS-2019-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Balk, Bert M. & (René) De Koster, M.B.M. & Kaps, Christian & Zofío, José L., 2021. "An evaluation of cross-efficiency methods: With an application to warehouse performance," Applied Mathematics and Computation, Elsevier, vol. 406(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balk, Bert M. & (René) De Koster, M.B.M. & Kaps, Christian & Zofío, José L., 2021. "An evaluation of cross-efficiency methods: With an application to warehouse performance," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    2. Charles, Vincent & Aparicio, Juan & Zhu, Joe, 2019. "The curse of dimensionality of decision-making units: A simple approach to increase the discriminatory power of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 279(3), pages 929-940.
    3. Valadkhani, Abbas & Roshdi, Israfil & Smyth, Russell, 2016. "A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters," Energy Economics, Elsevier, vol. 54(C), pages 363-375.
    4. Peyrache, Antonio & Rose, Christiern & Sicilia, Gabriela, 2020. "Variable selection in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 282(2), pages 644-659.
    5. Tavana, Madjid & Ebrahimnejad, Ali & Santos-Arteaga, Francisco J. & Mansourzadeh, Seyed Mehdi & Matin, Reza Kazemi, 2018. "A hybrid DEA-MOLP model for public school assessment and closure decision in the City of Philadelphia," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 70-89.
    6. Perrigot, Rozenn & Barros, Carlos Pestana, 2008. "Technical efficiency of French retailers," Journal of Retailing and Consumer Services, Elsevier, vol. 15(4), pages 296-305.
    7. Yongjun Li & Xiao Shi & Min Yang & Liang Liang, 2017. "Variable selection in data envelopment analysis via Akaike’s information criteria," Annals of Operations Research, Springer, vol. 253(1), pages 453-476, June.
    8. Benítez-Peña, Sandra & Bogetoft, Peter & Romero Morales, Dolores, 2020. "Feature Selection in Data Envelopment Analysis: A Mathematical Optimization approach," Omega, Elsevier, vol. 96(C).
    9. Sebastian Kohl & Jan Schoenfelder & Andreas Fügener & Jens O. Brunner, 2019. "The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals," Health Care Management Science, Springer, vol. 22(2), pages 245-286, June.
    10. Qiwei Xie & Yuanyuan Li & Lizheng Wang & Chao Liu, 2018. "Improving discrimination in data envelopment analysis without losing information based on Renyi’s entropy," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 1053-1068, December.
    11. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    12. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    13. Ramanathan, Ramakrishnan & Ramanathan, Usha & Bentley, Yongmei, 2018. "The debate on flexibility of environmental regulations, innovation capabilities and financial performance – A novel use of DEA," Omega, Elsevier, vol. 75(C), pages 131-138.
    14. Guilhermina Rego & Rui Nunes & José Costa, 2010. "The challenge of corporatisation: the experience of Portuguese public hospitals," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 11(4), pages 367-381, August.
    15. Ji, Xiang & Li, Guo & Wang, Zhaohua, 2017. "Impact of emission regulation policies on Chinese power firms’ reusable environmental investments and sustainable operations," Energy Policy, Elsevier, vol. 108(C), pages 163-177.
    16. Verspagen, Bart & Werker, Claudia, 2003. "The Invisible College of The Economics of Innovation and Technological Change," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 21, pages 393-419, December.
    17. Salvatore Greco & Alessio Ishizaka & Menelaos Tasiou & Gianpiero Torrisi, 2019. "On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 61-94, January.
    18. Baldin, Andrea, 2017. "A DEA approach for selecting a bundle of tickets for performing arts events," Journal of Retailing and Consumer Services, Elsevier, vol. 39(C), pages 190-200.
    19. Krüger, Jens J., 2018. "Direct targeting of efficient DMUs for benchmarking," International Journal of Production Economics, Elsevier, vol. 199(C), pages 1-6.
    20. Adler, Nicole & Golany, Boaz, 2001. "Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe," European Journal of Operational Research, Elsevier, vol. 132(2), pages 260-273, July.

    More about this item

    Keywords

    Cross-efficiency methods; warehouse efficiency; automation investment;
    All these keywords.

    JEL classification:

    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L81 - Industrial Organization - - Industry Studies: Services - - - Retail and Wholesale Trade; e-Commerce
    • L87 - Industrial Organization - - Industry Studies: Services - - - Postal and Delivery Services

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:103185. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.