IDEAS home Printed from https://ideas.repec.org/p/edn/sirdps/114.html
   My bibliography  Save this paper

Testing for Proportional Hazards with Unrestricted Univariate Unobserved Heterogeneity

Author

Listed:
  • Bhattacharjee, Arnab

Abstract

We develop tests of the proportional hazards assumption, with respect to a continuous covariate, in the presence of unobserved heterogeneity with unknown distribution at the individual observation level. The proposed tests are specially powerful against ordered alternatives useful for modeling non-proportional hazards situations. By contrast to the case when the heterogeneity distribution is known up to …nite dimensional parameters, the null hypothesis for the current problem is similar to a test for absence of covariate dependence. However, the two testing problems di¤er in the nature of relevant alternative hypotheses. We develop tests for both the problems against ordered alternatives. Small sample performance and an application to real data highlight the usefulness of the framework and methodology.

Suggested Citation

  • Bhattacharjee, Arnab, 2009. "Testing for Proportional Hazards with Unrestricted Univariate Unobserved Heterogeneity," SIRE Discussion Papers 2009-22, Scottish Institute for Research in Economics (SIRE).
  • Handle: RePEc:edn:sirdps:114
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10943/114
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhattacharjee, Arnab, 2004. "Estimation in hazard regression models under ordered departures from proportionality," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 517-536, October.
    2. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    3. Gorgens, Tue & Horowitz, Joel L., 1999. "Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 90(2), pages 155-191, June.
    4. Jenkins, Stephen P, 1995. "Easy Estimation Methods for Discrete-Time Duration Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 57(1), pages 129-138, February.
    5. Arnab Bhattacharjee, 2008. "Partial Orders with Respect to Continuous Covariates and Tests for the Proportional Hazards Model," Discussion Paper Series, School of Economics and Finance 200807, School of Economics and Finance, University of St Andrews.
    6. McCall, Brian P., 1996. "The Identifiability of the Mixed Proportional Hazards Model with Time-Varying Coefficients," Econometric Theory, Cambridge University Press, vol. 12(4), pages 733-738, October.
    7. Baker, Michael & Melino, Angelo, 2000. "Duration dependence and nonparametric heterogeneity: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 96(2), pages 357-393, June.
    8. Horowitz, Joel L, 1996. "Semiparametric Estimation of a Regression Model with an Unknown Transformation of the Dependent Variable," Econometrica, Econometric Society, vol. 64(1), pages 103-137, January.
    9. Joel L. Horowitz, 1999. "Semiparametric Estimation of a Proportional Hazard Model with Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 67(5), pages 1001-1028, September.
    10. Heckman, James J. & Singer, Burton, 1984. "Econometric duration analysis," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 63-132.
    11. Liu, P. Y. & Wei Yann Tsai, 1999. "A modified logrank test for censored survival data under order restrictions," Statistics & Probability Letters, Elsevier, vol. 41(1), pages 57-63, January.
    12. Han, Aaron K., 1987. "Non-parametric analysis of a generalized regression model : The maximum rank correlation estimator," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 303-316, July.
    13. Sherman, Robert P, 1993. "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, Econometric Society, vol. 61(1), pages 123-137, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Huiling & Kong, Xuefeng & Xu, Houbao & Yang, Jun, 2021. "Reliability analysis of products based on proportional hazard model with degradation trend and environmental factor," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhattacharjee, Arnab, 2009. "Testing for Proportional Hazards with Unrestricted Univariate Unobserved Heterogeneity," SIRE Discussion Papers 2009-22, Scottish Institute for Research in Economics (SIRE).
    2. Tiemen Woutersen & Jerry Hausman, 2005. "Estimating a Semi-Parametric Duration Model without Specifying Heterogeneity," Economics Working Paper Archive 525, The Johns Hopkins University,Department of Economics.
    3. Bijwaard Govert E. & Ridder Geert & Woutersen Tiemen, 2013. "A Simple GMM Estimator for the Semiparametric Mixed Proportional Hazard Model," Journal of Econometric Methods, De Gruyter, vol. 2(1), pages 1-23, July.
    4. Van den Berg, Gerard J., 2001. "Duration models: specification, identification and multiple durations," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 55, pages 3381-3460, Elsevier.
    5. Hausman, Jerry A. & Woutersen, Tiemen, 2014. "Estimating a semi-parametric duration model without specifying heterogeneity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 114-131.
    6. Gorgens, Tue & Horowitz, Joel L., 1999. "Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 90(2), pages 155-191, June.
    7. Coppejans, Mark, 2001. "Estimation of the binary response model using a mixture of distributions estimator (MOD)," Journal of Econometrics, Elsevier, vol. 102(2), pages 231-269, June.
    8. Jerry Hausman & Tiemen Woutersen, 2014. "Estimating the Derivative Function and Counterfactuals in Duration Models with Heterogeneity," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 472-496, August.
    9. Gorgens, T., 1999. "Semiparametric Estimation of Single-Index Transition Intensities," Papers 99-25, Carleton - School of Public Administration.
    10. Khan, Shakeeb, 2001. "Two-stage rank estimation of quantile index models," Journal of Econometrics, Elsevier, vol. 100(2), pages 319-355, February.
    11. Hess, Wolfgang & Persson, Maria, 2010. "The Duration of Trade Revisited. Continuous-Time vs. Discrete-Time Hazards," Working Papers 2010:1, Lund University, Department of Economics.
    12. Shakeeb Khan & Elie Tamer, 2002. "Pairwise Comparison Estimation of Censored Transformation Models," RCER Working Papers 495, University of Rochester - Center for Economic Research (RCER).
    13. Bijwaard, Govert E. & Ridder, Geert, 2005. "Correcting for selective compliance in a re-employment bonus experiment," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 77-111.
    14. Ruixuan Liu, 2020. "A competing risks model with time‐varying heterogeneity and simultaneous failure," Quantitative Economics, Econometric Society, vol. 11(2), pages 535-577, May.
    15. Zhang, Tao, 2003. "A Monte Carlo study on non-parametric estimation of duration models with unobserved heterogeneity," Memorandum 25/2003, Oslo University, Department of Economics.
    16. Hess, Wolfgang & Persson, Maria, 2009. "Survival and Death in International Trade - Discrete-Time Durations of EU Imports," Working Papers 2009:12, Lund University, Department of Economics.
    17. Lin, Huazhen & Peng, Heng, 2013. "Smoothed rank correlation of the linear transformation regression model," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 615-630.
    18. Liu, Tianqing & Yuan, Xiaohui & Sun, Jianguo, 2021. "Weighted rank estimation for nonparametric transformation models with nonignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    19. Horowitz, Joel L., 2004. "Semiparametric models," Papers 2004,17, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    20. Abrevaya, Jason, 1999. "Leapfrog estimation of a fixed-effects model with unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 93(2), pages 203-228, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:edn:sirdps:114. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/sireeuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Office (email available below). General contact details of provider: https://edirc.repec.org/data/sireeuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.