IDEAS home Printed from
   My bibliography  Save this paper

Analysis of the predictive ability of information accumulated over nights, weekends and holidays


  • Ilias Tsiakas


Recent empirical evidence suggests that the weekend and holiday calendar effects are much stronger and statistically significant in volatility as opposed to expected returns. This paper seeks an explanation for this empirical finding by undertaking a comprehensive investigation of the predictive ability of information accumulated over nights, weekends and holidays for a series of global indices. We study this form of seasonal heteroscedasticity by employing a generalized stochastic volatility model, in which the conditional daily volatility is measured in calendar time from open-to-close of the market, and depends on lagged close-to-open returns. We conduct a series of empirical tests and conclude that the information accumulated over weekends and especially holidays is a predictor of subsequent daily volatility. The SV parameters are estimated by implementing a Bayesian MCMC algorithm, which is adjusted for sampling the seasonal volatility level effects. We compute in-sample and out-of-sample density forecasts for assessing the adequacy of the conditional distribution. We also use Bayes factors as a likelihood-based framework for evaluating the SV specifications. Bayes factors account for both estimation and model risk. We conclude by computing volatility forecasts relevant for risk management

Suggested Citation

  • Ilias Tsiakas, 2004. "Analysis of the predictive ability of information accumulated over nights, weekends and holidays," Econometric Society 2004 Australasian Meetings 208, Econometric Society.
  • Handle: RePEc:ecm:ausm04:208

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    3. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
    4. Josef Lakonishok, Seymour Smidt, 1988. "Are Seasonal Anomalies Real? A Ninety-Year Perspective," Review of Financial Studies, Society for Financial Studies, vol. 1(4), pages 403-425.
    5. Ilias Tsiakas, 2006. "Periodic Stochastic Volatility and Fat Tails," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 90-135.
    6. John F. Geweke, 1991. "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments," Staff Report 148, Federal Reserve Bank of Minneapolis.
    7. Jeff Fleming & Chris Kirby, 2003. "A Closer Look at the Relation between GARCH and Stochastic Autoregressive Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(3), pages 365-419.
    8. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    9. repec:bla:restud:v:65:y:1998:i:3:p:361-93 is not listed on IDEAS
    10. Michael K Pitt & Neil Shephard, "undated". "Filtering via simulation: auxiliary particle filters," Economics Papers 1997-W13, Economics Group, Nuffield College, University of Oxford.
    11. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    12. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Yun-Yeong Kim, 2013. "A Test for Trading Time Hypothesis on Weekends under Time Varying Autoregression with Heteroskedasti," Korean Economic Review, Korean Economic Association, vol. 29, pages 97-118.

    More about this item


    Stochastic Volatility; Calendar Effects; Seasonal Heteroscedasticity; Bayesian MCMC estimation; Bootstrapping; Forecasting;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:ausm04:208. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.