IDEAS home Printed from https://ideas.repec.org/p/ecl/riceco/15-008.html
   My bibliography  Save this paper

Semi-nonparametric Spline Modifications to the Cornwell-Schmidt-Sickles Estimator: An Analysis of U.S. Banking Productivity

Author

Listed:
  • Almanidis, Pavlos

    (Ernst & Young LLP, Toronto)

  • Karagiannis, Giannis

    (University of Macedonia)

  • Sickles, Robin C.

    (Rice U)

Abstract

This paper modifies the Cornwell, Schmidt and Sickles (CSS) (1990) time-varying specification of technical efficiency to allow for switching patterns in temporal changes, which may occur more than once during the sample period. For this purpose, we move from the (second-order) polynomial specification of the standard CSS to a spline function set up while keeping CSS's flexibility regarding the cross section dimension. The spline function specification of the temporal pattern of technical efficiency can accommodate more than one turning point and thus can be non-monotonic. This allows the modeler to account for firm or individual efficiency gains that can occur relatively quickly, for example, changes related to regulation or policy changes as well as those related to ownership/organization changes (e.g., merger or acquisitions).

Suggested Citation

  • Almanidis, Pavlos & Karagiannis, Giannis & Sickles, Robin C., 2015. "Semi-nonparametric Spline Modifications to the Cornwell-Schmidt-Sickles Estimator: An Analysis of U.S. Banking Productivity," Working Papers 15-008, Rice University, Department of Economics.
  • Handle: RePEc:ecl:riceco:15-008
    as

    Download full text from publisher

    File URL: http://economics.rice.edu/file/774/download?token=0v621wtl
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Seung Ahn & Young Lee & Peter Schmidt, 2007. "Stochastic frontier models with multiple time-varying individual effects," Journal of Productivity Analysis, Springer, vol. 27(1), pages 1-12, February.
    2. Yu, Ping, 2012. "Likelihood estimation and inference in threshold regression," Journal of Econometrics, Elsevier, vol. 167(1), pages 274-294.
    3. Kevin Fox, 1998. "Non-Parametric Estimation of Technical Progress," Journal of Productivity Analysis, Springer, vol. 10(3), pages 235-250, November.
    4. Hung-jen Wang & Peter Schmidt, 2002. "One-Step and Two-Step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels," Journal of Productivity Analysis, Springer, vol. 18(2), pages 129-144, September.
    5. Kneip, Alois & Sickles, Robin C. & Song, Wonho, 2012. "A New Panel Data Treatment For Heterogeneity In Time Trends," Econometric Theory, Cambridge University Press, vol. 28(03), pages 590-628, June.
    6. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    7. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    8. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    9. Ahn, Seung C. & Lee, Young H. & Schmidt, Peter, 2013. "Panel data models with multiple time-varying individual effects," Journal of Econometrics, Elsevier, vol. 174(1), pages 1-14.
    10. Wheelock, David C. & Wilson, Paul W., 2001. "New evidence on returns to scale and product mix among U.S. commercial banks," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 653-674, June.
    11. Coelli, Tim & Perelman, Sergio, 1999. "A comparison of parametric and non-parametric distance functions: With application to European railways," European Journal of Operational Research, Elsevier, vol. 117(2), pages 326-339, September.
    12. Bai, Jushan & Kao, Chihwa & Ng, Serena, 2009. "Panel cointegration with global stochastic trends," Journal of Econometrics, Elsevier, vol. 149(1), pages 82-99, April.
    13. Robin Sickles & David Good & Lullit Getachew, 2002. "Specification of Distance Functions Using Semi- and Nonparametric Methods with an Application to the Dynamic Performance of Eastern and Western European Air Carriers," Journal of Productivity Analysis, Springer, vol. 17(1), pages 133-155, January.
    14. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    15. Lee, Young Hoon, 2006. "A stochastic production frontier model with group-specific temporal variation in technical efficiency," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1616-1630, November.
    16. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
    17. Anna Bottasso & Maurizio Conti, 2009. "Price cap regulation and the ratchet effect: a generalized index approach," Journal of Productivity Analysis, Springer, vol. 32(3), pages 191-201, December.
    18. Hung-Jen Wang, 2002. "Heteroscedasticity and Non-Monotonic Efficiency Effects of a Stochastic Frontier Model," Journal of Productivity Analysis, Springer, vol. 18(3), pages 241-253, November.
    19. Pavlos Almanidis, 2013. "Accounting for heterogeneous technologies in the banking industry: a time-varying stochastic frontier model with threshold effects," Journal of Productivity Analysis, Springer, vol. 39(2), pages 191-205, April.
    20. McAllister, Patrick H. & McManus, Douglas, 1993. "Resolving the scale efficiency puzzle in banking," Journal of Banking & Finance, Elsevier, vol. 17(2-3), pages 389-405, April.
    21. Rafael Cuesta, 2000. "A Production Model With Firm-Specific Temporal Variation in Technical Inefficiency: With Application to Spanish Dairy Farms," Journal of Productivity Analysis, Springer, vol. 13(2), pages 139-158, March.
    22. COELLI, Tim, 2000. "On the econometric estimation of the distance function representation of a production technology," CORE Discussion Papers 2000042, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    23. Diewert, W E & Wales, T J, 1992. "Quadratic Spline Models for Producer's Supply and Demand Functions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(3), pages 705-722, August.
    24. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    25. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    26. Giannis Karagiannis & Vangelis Tzouvelekas, 2007. "A flexible time-varying specification of the technical inefficiency effects model," Empirical Economics, Springer, vol. 33(3), pages 531-540, November.
    27. Baltagi, Badi H & Griffin, James M, 1988. "A General Index of Technical Change," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 20-41, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert McKeown, 2017. "Where are the economies of scale in Canadian banking?," Working Papers 1380, Queen's University, Department of Economics.
    2. A. Peyrache & A. N. Rambaldi, 2017. "Incorporating temporal and country heterogeneity in growth accounting—an application to EU-KLEMS," Journal of Productivity Analysis, Springer, vol. 47(2), pages 143-166, April.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:riceco:15-008. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/dericus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.