IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp659.html
   My bibliography  Save this paper

mhbounds - Sensitivity Analysis for Average Treatment Effects

Author

Listed:
  • Sascha O. Becker
  • Marco Caliendo

Abstract

Matching has become a popular approach to estimate average treatment effects. It is based on the conditional independence or unconfoundedness assumption. Checking the sensitivity of the estimated results with respect to deviations from this identifying assumption has become an increasingly important topic in the applied evaluation literature. If there are unobserved variables which affect assignment into treatment and the outcome variable simultaneously, a hidden bias might arise to which matching estimators are not robust. We address this problem with the bounding approach proposed by Rosenbaum (2002), where mhbounds allows the researcher to determine how strongly an unmeasured variable must influence the selection process in order to undermine the implications of the matching analysis.

Suggested Citation

  • Sascha O. Becker & Marco Caliendo, 2007. "mhbounds - Sensitivity Analysis for Average Treatment Effects," Discussion Papers of DIW Berlin 659, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp659
    as

    Download full text from publisher

    File URL: http://www.diw.de/documents/publikationen/73/diw_01.c.55697.de/dp659.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    2. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    3. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    4. Andrea Ichino & Fabrizia Mealli & Tommaso Nannicini, 2008. "From temporary help jobs to permanent employment: what can we learn from matching estimators and their sensitivity?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(3), pages 305-327.
    5. repec:ags:stataj:116250 is not listed on IDEAS
    6. Manski, C.F., 1992. "Identification Problems in the Social Sciences," Working papers 9217, Wisconsin Madison - Social Systems.
    7. Nannicini, Tommaso, 2007. "Simulation-based sensitivity analysis for matching estimators," Stata Journal, StataCorp LP, vol. 0(Number 3), pages 1-17.
    8. Alberto Abadie & David Drukker & Jane Leber Herr & Guido W. Imbens, 2004. "Implementing matching estimators for average treatment effects in Stata," Stata Journal, StataCorp LP, vol. 4(3), pages 290-311, September.
    9. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    10. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    11. Caliendo, Marco & Hujer, Reinhard & Thomsen, Stephan L., 2005. "The Employment Effects of Job Creation Schemes in Germany: A Microeconometric Evaluation," IZA Discussion Papers 1512, Institute for the Study of Labor (IZA).
    12. DiPrete, Thomas A. & Gangl, Markus, 2004. "Assessing bias in the estimation of causal effects: Rosenbaum bounds on matching estimators and instrumental variables estimation with imperfect instruments," Discussion Papers, Research Unit: Labor Market Policy and Employment SP I 2004-101, WZB Berlin Social Science Center.
    13. repec:ags:stataj:116022 is not listed on IDEAS
    14. Becker, Sascha O. & Ichino, Andrea, 2002. "Estimation of average treatment effects based on propensity scores," Stata Journal, StataCorp LP, vol. 0(Number 4), pages 1-20.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    matching; treatment effects; sensitivity analysis; unobserved heterogeneity;

    JEL classification:

    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp659. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bibliothek). General contact details of provider: http://edirc.repec.org/data/diwbede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.