IDEAS home Printed from https://ideas.repec.org/p/diw/diwddc/dd73.html
   My bibliography  Save this paper

Technical Greenhouse-Gas Mitigation Potentials of Biochar Soil Incorporation in Germany: Data Documentation

Author

Listed:
  • Isabel Teichmann

Abstract

No abstract is available for this item.

Suggested Citation

  • Isabel Teichmann, 2014. "Technical Greenhouse-Gas Mitigation Potentials of Biochar Soil Incorporation in Germany: Data Documentation," Data Documentation 73, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwddc:dd73
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.479855.de/diw_datadoc_2014-073.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Uwe Kunert & Sabine Radke, 2013. "Nachfrageentwicklung und Kraftstoffeinsatz im Straßenverkehr: alternative Antriebe kommen nur schwer in Fahrt," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 80(50), pages 13-23.
    2. Isabel Teichmann, 2014. "Technical Greenhouse-Gas Mitigation Potentials of Biochar Soil Incorporation in Germany," Discussion Papers of DIW Berlin 1406, DIW Berlin, German Institute for Economic Research.
    3. Arnold, Karin & von Geibler, Justus & Bienge, Katrin & Stachura, Caroline & Borbonus, Sylvia & Kristof, Kora, 2009. "Kaskadennutzung von nachwachsenden Rohstoffen: ein Konzept zur Verbesserung der Rohstoffeffizienz und Optimierung der Landnutzung," Wuppertal Papers 180, Wuppertal Institute for Climate, Environment and Energy.
    4. Williams, Paul T. & Besler, Serpil, 1996. "The influence of temperature and heating rate on the slow pyrolysis of biomass," Renewable Energy, Elsevier, vol. 7(3), pages 233-250.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    2. Isabel Teichmann & Claudia Kemfert, 2014. "Biokohle in der Landwirtschaft als Klimaretter?," DIW Roundup: Politik im Fokus 47, DIW Berlin, German Institute for Economic Research.
    3. Isabel Teichmann, 2014. "Technical Greenhouse-Gas Mitigation Potentials of Biochar Soil Incorporation in Germany," Discussion Papers of DIW Berlin 1406, DIW Berlin, German Institute for Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabel Teichmann, 2014. "Technical Greenhouse-Gas Mitigation Potentials of Biochar Soil Incorporation in Germany," Discussion Papers of DIW Berlin 1406, DIW Berlin, German Institute for Economic Research.
    2. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    3. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    4. Granada, E. & Eguía, P. & Vilan, J.A. & Comesaña, J.A. & Comesaña, R., 2012. "FTIR quantitative analysis technique for gases. Application in a biomass thermochemical process," Renewable Energy, Elsevier, vol. 41(C), pages 416-421.
    5. Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
    6. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    7. Parisa Heidarnejad & Hadi Genceli & Nasim Hashemian & Mustafa Asker & Mohammad Al-Rawi, 2024. "Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends," Energies, MDPI, vol. 17(15), pages 1-30, August.
    8. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany: Data Documentation," Data Documentation 78, DIW Berlin, German Institute for Economic Research.
    9. Alexander Gorshkov & Nikolay Berezikov & Albert Kaltaev & Stanislav Yankovsky & Konstantin Slyusarsky & Roman Tabakaev & Kirill Larionov, 2021. "Analysis of the Physicochemical Characteristics of Biochar Obtained by Slow Pyrolysis of Nut Shells in a Nitrogen Atmosphere," Energies, MDPI, vol. 14(23), pages 1-18, December.
    10. Collazo, Joaquín & Pazó, José Antonio & Granada, Enrique & Saavedra, Ángeles & Eguía, Pablo, 2012. "Determination of the specific heat of biomass materials and the combustion energy of coke by DSC analysis," Energy, Elsevier, vol. 45(1), pages 746-752.
    11. John Steven Devia-Orjuela & Christian E Alvarez-Pugliese & Dayana Donneys-Victoria & Nilson Marriaga Cabrales & Luz Edith Barba Ho & Balazs Brém & Anca Sauciuc & Emese Gál & Douglas Espin & Martin Sch, 2019. "Evaluation of Press Mud, Vinasse Powder and Extraction Sludge with Ethanol in a Pyrolysis Process," Energies, MDPI, vol. 12(21), pages 1-21, October.
    12. Beis, S.H. & Onay, Ö. & Koçkar, Ö.M., 2002. "Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions," Renewable Energy, Elsevier, vol. 26(1), pages 21-32.
    13. Zeng, Kuo & Soria, José & Gauthier, Daniel & Mazza, Germán & Flamant, Gilles, 2016. "Modeling of beech wood pellet pyrolysis under concentrated solar radiation," Renewable Energy, Elsevier, vol. 99(C), pages 721-729.
    14. Hasan, M.M. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Jahirul, M.I., 2021. "Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Knauf, Marcus, 2015. "An Analysis of Wood Market Balance Modeling in Germany," Forest Policy and Economics, Elsevier, vol. 50(C), pages 319-326.
    16. Sammouda, H. & Royere, C. & Belghith, A. & Maalej, M., 1999. "Heat transfer in a rotating furnace of asolarsand-boiler at a 1000 kW thermal concentrationsystem," Renewable Energy, Elsevier, vol. 17(1), pages 21-47.
    17. Kirubakaran, V. & Sivaramakrishnan, V. & Nalini, R. & Sekar, T. & Premalatha, M. & Subramanian, P., 2009. "A review on gasification of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 179-186, January.
    18. João Silva & Senhorinha Teixeira & José Teixeira, 2023. "A Review of Biomass Thermal Analysis, Kinetics and Product Distribution for Combustion Modeling: From the Micro to Macro Perspective," Energies, MDPI, vol. 16(18), pages 1-23, September.
    19. Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    20. Granada, Enrique & Míguez, J.L. & Febrero, Lara & Collazo, Joaquín & Eguía, Pablo, 2013. "Development of an experimental technique for oil recovery during biomass pyrolysis," Renewable Energy, Elsevier, vol. 60(C), pages 179-184.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwddc:dd73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.