IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/938.html
   My bibliography  Save this paper

Aggregation and Social Choice: A Mean Voter Theorem

Author

Listed:
  • Andrew Caplin

    (Columbia University)

  • Barry Nalebuff

    (Yale School of Management)

Abstract

A celebrated result of Black (1984a) demonstrates the existence of a simple majority winner when preferences are single-peaked. The social choice follows the preferences of the median voter's most preferred outcome beats any alternative. However, this conclusion does not extend to elections in which candidates differ in more than one dimension. This paper provides a multi-dimensional analog of the median voter result. We show that the mean voter's most preferred outcome is unbeatable according to a 64%-majority rule. The weaker conditions supporting this result represent a significant generalization of Caplin and Nalebuff (1988). The proof of our mean voter result uses a mathematical aggregation theorem due to Prekopa (1971, 1973) and Borell (1975). This theorem has broad applications in economics. An application to the distribution of income is described at the end of this paper; results on imperfect competition are presented in the companion paper [CFDP 937].

Suggested Citation

  • Andrew Caplin & Barry Nalebuff, 1990. "Aggregation and Social Choice: A Mean Voter Theorem," Cowles Foundation Discussion Papers 938, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:938
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d09/d0938.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kramer, Gerald H, 1973. "On a Class of Equilibrium Conditions for Majority Rule," Econometrica, Econometric Society, vol. 41(2), pages 285-297, March.
    2. Greenberg, Joseph, 1979. "Consistent Majority Rules over Compact Sets of Alternatives," Econometrica, Econometric Society, vol. 47(3), pages 627-636, May.
    3. Rubinstein, Ariel, 1979. "A Note about the "Nowhere Denseness" of Societies Having an Equilibrium under Majority Rule," Econometrica, Econometric Society, vol. 47(2), pages 511-514, March.
    4. Caplin, Andrew & Nalebuff, Barry, 1991. "Aggregation and Imperfect Competition: On the Existence of Equilibrium," Econometrica, Econometric Society, vol. 59(1), pages 25-59, January.
    5. Caplin, Andrew S & Nalebuff, Barry J, 1988. "On 64%-Majority Rule," Econometrica, Econometric Society, vol. 56(4), pages 787-814, July.
    6. Heckman, James J & Honore, Bo E, 1990. "The Empirical Content of the Roy Model," Econometrica, Econometric Society, vol. 58(5), pages 1121-1149, September.
    7. McKelvey, Richard D, 1979. "General Conditions for Global Intransitivities in Formal Voting Models," Econometrica, Econometric Society, vol. 47(5), pages 1085-1112, September.
    8. Grandmont, Jean-Michel, 1978. "Intermediate Preferences and the Majority Rule," Econometrica, Econometric Society, vol. 46(2), pages 317-330, March.
    9. Gupta, Somesh Das, 1980. "Brunn-Minkowski inequality and its aftermath," Journal of Multivariate Analysis, Elsevier, vol. 10(3), pages 296-318, September.
    10. Ian Jewitt, 1987. "Risk Aversion and the Choice Between Risky Prospects: The Preservation of Comparative Statics Results," Review of Economic Studies, Oxford University Press, vol. 54(1), pages 73-85.
    11. A. D. Roy, 1951. "Some Thoughts On The Distribution Of Earnings," Oxford Economic Papers, Oxford University Press, vol. 3(2), pages 135-146.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crès, Hervé & Utku Ünver, M., 2017. "Toward a 50%-majority equilibrium when voters are symmetrically distributed," Mathematical Social Sciences, Elsevier, vol. 90(C), pages 145-149.
    2. Hervé Crès & Mich Tvede, 2001. "Proxy fights in incomplete markets: when majority voting and sidepayments are equivalent," Sciences Po publications 726/2001, Sciences Po.
    3. Hervé Crès, 2000. "Majority Stable Production Equilibria: A Multivariate Mean Shareholders Theorem," Sciences Po publications 706/2000, Sciences Po.
    4. Balasko, Yves & Cres, Herve, 1997. "The Probability of Condorcet Cycles and Super Majority Rules," Journal of Economic Theory, Elsevier, vol. 75(2), pages 237-270, August.
    5. Hervé Crès & M. Utku Ünver, 2010. "Ideology and Existence of 50%-Majority Equilibria in Multidimensional Spatial Voting Models," Journal of Theoretical Politics, , vol. 22(4), pages 431-444, October.
    6. Caplin, Andrew & Nalebuff, Barry, 1991. "Aggregation and Imperfect Competition: On the Existence of Equilibrium," Econometrica, Econometric Society, vol. 59(1), pages 25-59, January.
    7. Tanner, Thomas Cole, 1994. "The spatial theory of elections: an analysis of voters' predictive dimensions and recovery of the underlying issue space," ISU General Staff Papers 1994010108000018174, Iowa State University, Department of Economics.
    8. Tovey, Craig A., 2010. "The instability of instability of centered distributions," Mathematical Social Sciences, Elsevier, vol. 59(1), pages 53-73, January.
    9. Hervé Crès, 2001. "Aggregation of coarse preferences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 18(3), pages 507-525.
    10. repec:spo:wpecon:info:hdl:2441/10284 is not listed on IDEAS
    11. Gerald H. Kramer, 1980. "Extension of a Dynamical Model of Political Equilibrium," Cowles Foundation Discussion Papers 556, Cowles Foundation for Research in Economics, Yale University.
    12. Hervé Crès & Mich Tvede, 2005. "Portfolio Diversification and Internalization of Production Externalities through Majority Voting," Working Papers hal-00587205, HAL.
    13. Pierre-Guillaume Méon, 2006. "Majority voting with stochastic preferences: The whims of a committee are smaller than the whims of its members," Constitutional Political Economy, Springer, vol. 17(3), pages 207-216, September.
    14. Banks, Jeffrey S. & Duggan, John & Le Breton, Michel, 2006. "Social choice and electoral competition in the general spatial model," Journal of Economic Theory, Elsevier, vol. 126(1), pages 194-234, January.
    15. repec:spo:wpecon:info:hdl:2441/10281 is not listed on IDEAS
    16. repec:spo:wpecon:info:hdl:2441/10282 is not listed on IDEAS
    17. Mathieu Martin & Zéphirin Nganmeni & Craig A. Tovey, 2019. "Dominance in Spatial Voting with Imprecise Ideals: A New Characterization of the Yolk," THEMA Working Papers 2019-02, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    18. Edward Wesep, 2012. "Defensive Politics," Public Choice, Springer, vol. 151(3), pages 425-444, June.
    19. repec:spo:wpecon:info:hdl:2441/10277 is not listed on IDEAS
    20. Tovey, Craig A., 2010. "A critique of distributional analysis in the spatial model," Mathematical Social Sciences, Elsevier, vol. 59(1), pages 88-101, January.
    21. Bade, Sophie, 2011. "Electoral competition with uncertainty averse parties," Games and Economic Behavior, Elsevier, vol. 72(1), pages 12-29, May.
    22. Riste Gjorgjiev & Dimitrios Xefteris, 2015. "Transitive supermajority rule relations," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(2), pages 299-312, October.
    23. Paul Ellickson & Sanjog Misra, 2012. "Enriching interactions: Incorporating outcome data into static discrete games," Quantitative Marketing and Economics (QME), Springer, vol. 10(1), pages 1-26, March.
    24. Burgess, Simon & Lane, Julia & Stevens, David, 1997. "Jobs, Workers and Changes in Earnings Dispersion," CEPR Discussion Papers 1714, C.E.P.R. Discussion Papers.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:938. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Matthew Regan (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.